
spheres
Release 0.3.0.9

Matthew Weiss

Jan 21, 2021





CONTENTS

1 spheres 3
1.1 spheres.beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 spheres.coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 spheres.oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 spheres.polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 spheres.relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 spheres.spin_circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 spheres.stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 spheres.stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.9 spheres.symmetrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.10 spheres.symplectic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.11 spheres.utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.12 spheres.visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2 spheres 63
2.1 An Introduction to Majorana’s “Stellar” Representation of Spin . . . . . . . . . . . . . . . . . . . . 64
2.2 How to Prepare a Permutation Symmetric Multiqubit State on an Actual Quantum Computer . . . . . 74
2.3 How To Prepare a Spin-j State on a Photonic Quantum Computer . . . . . . . . . . . . . . . . . . . 87
2.4 Majorana Stars and Structured Gaussian Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.5 Generalizing the Majorana Representation for Mixed States and Operators . . . . . . . . . . . . . . 124
2.6 Stablization via Symmetrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3 Indices and tables 145

Python Module Index 147

Index 149

i



ii



spheres, Release 0.3.0.9

spheres

CONTENTS 1



spheres, Release 0.3.0.9

2 CONTENTS



CHAPTER

ONE

SPHERES

Modules

spheres.beams Majorana formalism for structured Gaussian beams.
spheres.coordinates Coordinate transformations, mainly sphere related.
spheres.oscillators Functions for dealing with oscillators, particularly in

the case of double oscillators in the context of the
Schwinger representation of spin.

spheres.polyhedra Polyhedra related functions.
spheres.relativity Functions related to Lorentz transformations/Mobius

transformations.
spheres.spin_circuits
spheres.stabilization
spheres.stars
spheres.symmetrization Symmetrization related functions, particularly in the

context of permutation symmetric multiqubit states.
spheres.symplectic Functions for converting between Gaussian Hamiltoni-

ans, complex symplectic matrices, and real symplectic
matrices.

spheres.utils Miscellaneous useful functions.
spheres.visualization Tools for visualizing spin states with vpython and mat-

plotlib.

1.1 spheres.beams

Majorana formalism for structured Gaussian beams.

Functions

animate_spin_beam(spin, H[, dt, T, size, . . . ]) Animates a spin state and its corresponding structured
Gaussian beam side by side with matplotlib.

colorize(z) Converts complex values into colors: hue represents
phase and brightness magnitude.

laguerre_gauss_mode(N, l[, coordinates]) Returns a function evaluating a Laguerre-Gauss mode,
which may take cartesian/cylindrical coordinates or vec-
tors thereof.

continues on next page
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Table 2 – continued from previous page
spin_beam(spin[, coordinates]) Converts a spin state into a structured Gaussian beam,

the latter being function of cartesian or cylindrical coor-
dinates, expressing the intensity and phase of the classi-
cal light beam in the paraxial approximation.

viz_beam(beam[, size, n_samples]) Visualizes a structured Gaussian beam with matplotlib.
viz_spin_beam(spin[, size, n_samples]) Visualizes a spin state and its corresponding structured

Gaussian beam side by side with matplotlib.

1.1.1 spheres.beams.animate_spin_beam

spheres.beams.animate_spin_beam(spin, H, dt=0.1, T=6.283185307179586, size=3.5,
n_samples=200, filename=None, fps=20)

Animates a spin state and its corresponding structured Gaussian beam side by side with matplotlib.

Parameters

• spin (qt.Qobj) – Spin-j state.

• H (qt.Qobj) – Hamiltonian.

• dt (float) – Time step.

• T (float) – How long to evolve for.

• size (float) – Size of plot.

• n_samples (int) – Number of samples of the beam function.

• filename (str) – Filename at which to save movie.

• fps (int) – Frames per second.

1.1.2 spheres.beams.colorize

spheres.beams.colorize(z)
Converts complex values into colors: hue represents phase and brightness magnitude.

Adapted from https://stackoverflow.com/questions/17044052/mathplotlib-imshow-complex-2d-array.

Parameters z (np.array) – Complex values.

Returns c – Color values.

Return type np.array

1.1.3 spheres.beams.laguerre_gauss_mode

spheres.beams.laguerre_gauss_mode(N, l, coordinates='cartesian')
Returns a function evaluating a Laguerre-Gauss mode, which may take cartesian/cylindrical coordinates or
vectors thereof.

𝐿𝐺(𝑟, 𝜑, 𝑧) =
𝑖|𝑙|−𝑁

𝑤

⎯⎸⎸⎷2|𝑙|+1[𝑁−𝑙
2 ]!

𝜋[𝑁+|𝑙|
2 ]!

𝑒−
𝑟2

𝑤2 (
𝑟

𝑤
)|𝑙|𝑒𝑖𝑙𝜑𝐿

|𝑙|
𝑁−|𝑙|

2

(
2𝑟2

𝑤2
)

Where 𝑤 =
√︀

1 + ( 𝑧
𝜋 )2 and 𝐿𝑏

𝑎 is a generalized Laguerre polynomial.

Parameters
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• N (int) – An integer specifying the Laguerre-Gauss mode (N, l).

• l (int) – An integer specifying the Laguerre-Gauss mode (N, l).

• coodinates (str) – Whether to return a function of “cartesian” or “cylindrical” coordi-
nates.

Returns lg – (Vectorized) function of cartesian or cylindrical coordinates.

Return type func

1.1.4 spheres.beams.spin_beam

spheres.beams.spin_beam(spin, coordinates='cartesian')
Converts a spin state into a structured Gaussian beam, the latter being function of cartesian or cylindrical co-
ordinates, expressing the intensity and phase of the classical light beam in the paraxial approximation. A spin
| 𝑗,𝑚⟩ state is identified with LG mode (2j, 2m).

Parameters

• spin (qt.Qobj) – Spin-j state

• coordinates (str) – “cartesian” or “cylindrical

Returns sgb – (Vectorized) function of cartesian or cylindrical coordinates.

Return type func

1.1.5 spheres.beams.viz_beam

spheres.beams.viz_beam(beam, size=3.5, n_samples=200)
Visualizes a structured Gaussian beam with matplotlib.

Parameters

• beam (func) – Beam function.

• size (float) – Size of plot.

• n_samples (int) – Number of samples of the beam function.

1.1.6 spheres.beams.viz_spin_beam

spheres.beams.viz_spin_beam(spin, size=3.5, n_samples=200)
Visualizes a spin state and its corresponding structured Gaussian beam side by side with matplotlib.

Parameters

• spin (qt.Qobj) – Spin-j state.

• size (float) – Size of plot.

• n_samples (int) – Number of samples of the beam function.

1.1. spheres.beams 5
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1.2 spheres.coordinates

Coordinate transformations, mainly sphere related.

Functions

c_sph(c) Converts extended complex coordinate to spherical co-
ordinates.

c_spinor(c) Converts extended complex coordinate to a spinor.
c_xyz(c[, pole]) Stereographic projection from the extended complex

plane to the unit sphere.
sph_c(sph) Converts spherical coordinates to extended complex co-

ordinate.
sph_spinor(sph) Converts spherical coordinates to spinor.
sph_xyz(sph) Converts spherical coordinates (𝜃, 𝜑) to cartesian coor-

dinates (𝑥, 𝑦, 𝑧).

spinor_c(spinor) Converts spinor
(︂
𝑎
𝑏

)︂
to extended complex coordinate.

spinor_sph(spinor) Converts spinor to spherical coordinates.
spinor_xyz(spinor) Converts spinor | 𝜓⟩ to cartesian coordinates by tak-

ing the expectation values with the three Pauli matrices:
(⟨𝜓 | 𝑋 | 𝜓⟩, ⟨𝜓 | 𝑌 | 𝜓⟩, ⟨𝜓 | 𝑍 | 𝜓⟩).

xyz_c(xyz[, pole]) Reverse Stereographic projection from the unit sphere
to the extended complex plane.

xyz_sph(xyz) Converts cartesian coordinates (𝑥, 𝑦, 𝑧) to spherical co-
ordinates (𝜃, 𝜑).

xyz_spinor(xyz) Converts cartesian coordinates to a spinor by reverse
stereographic projection to the extended complex plane,
and then lifting the latter to a 2-vector.

1.2.1 spheres.coordinates.c_sph

spheres.coordinates.c_sph(c)
Converts extended complex coordinate to spherical coordinates.

Parameters c (complex/inf or list/np.ndarray) – Extended complex coordinate(s).

Returns sph – (List of) Spherical coordinates 𝜃, 𝜑.

Return type np.ndarray

6 Chapter 1. spheres

https://en.wikipedia.org/wiki/Stereographic_projection
https://en.wikipedia.org/wiki/Stereographic_projection


spheres, Release 0.3.0.9

1.2.2 spheres.coordinates.c_spinor

spheres.coordinates.c_spinor(c)
Converts extended complex coordinate to a spinor.

If 𝑐 = ∞, returns
(︂

0
1

)︂
.

Otherwise, returns 1√
1+|𝑐|2

(︂
1
𝑐

)︂
Parameters c (complex/inf or list/np.ndarray) – Extended complex coordinate(s).

Returns spinor – (List of) normalized spinor(s).

Return type list or qt.Qobj

1.2.3 spheres.coordinates.c_xyz

spheres.coordinates.c_xyz(c, pole='south')
Stereographic projection from the extended complex plane to the unit sphere. Given coordinate 𝑐 = 𝑥 + 𝑖𝑦 or
∞:

If 𝑐 = ∞, returns (0, 0,−1).

Otherwise, returns ( 2𝑥
1+𝑥2+𝑦2 ,

2𝑦
1+𝑥2+𝑦2 ,

1−𝑥2−𝑦2

1+𝑥2+𝑦2 ).

Parameters

• c (complex/inf or list/np.ndarray) – Point(s) on the extended complex plane.

• pole (str, default 'south') – Whether to project from the North or South pole.

Returns Cartesian coordinates of point(s) on unit sphere.

Return type np.ndarray

1.2.4 spheres.coordinates.sph_c

spheres.coordinates.sph_c(sph)
Converts spherical coordinates to extended complex coordinate.

Parameters sph (list/np.ndarray) – (List of) Spherical coordinates 𝜃, 𝜑.

Returns c – Extended complex coordinate(s).

Return type complex/inf or np.ndarray

1.2.5 spheres.coordinates.sph_spinor

spheres.coordinates.sph_spinor(sph)
Converts spherical coordinates to spinor.

Parameters sph (list or np.ndarray) – Spherical coordinates 𝑟, 𝜑, 𝜃.

Returns spinor – Spinor(s).

Return type list or qt.Qobj

1.2. spheres.coordinates 7

https://en.wikipedia.org/wiki/Stereographic_projection


spheres, Release 0.3.0.9

1.2.6 spheres.coordinates.sph_xyz

spheres.coordinates.sph_xyz(sph)
Converts spherical coordinates (𝜃, 𝜑) to cartesian coordinates (𝑥, 𝑦, 𝑧). We use the physicist’s convention: 𝜃 ∈
[0, 𝜋], 𝜑 ∈ [0, 2𝜋].

𝑥 = sin 𝜃 cos(𝜑)

𝑦 = sin 𝜃 sin(𝜑)

𝑧 = cos(𝜃)

Parameters sph (list/np.ndarray) – (List of) Spherical coordinates.

Returns xyz – (List of) Cartesian coordinates.

Return type np.ndarray

1.2.7 spheres.coordinates.spinor_c

spheres.coordinates.spinor_c(spinor)

Converts spinor
(︂
𝑎
𝑏

)︂
to extended complex coordinate.

If 𝑎 = 0, returns ∞.
Otherwise returns 𝑏

𝑎 .

Parameters spinor (list or qt.Qobj) – Normalized spinor(s).

Returns c – Extended complex coordinate(s).

Return type complex/inf or np.ndarray

1.2.8 spheres.coordinates.spinor_sph

spheres.coordinates.spinor_sph(spinor)
Converts spinor to spherical coordinates.

Parameters spinor (list or qt.Qobj) – Spinor(s).

Returns sph – Spherical coordinates 𝑟, 𝜑, 𝜃.

Return type np.ndarray

1.2.9 spheres.coordinates.spinor_xyz

spheres.coordinates.spinor_xyz(spinor)
Converts spinor | 𝜓⟩ to cartesian coordinates by taking the expectation values with the three Pauli matrices:
(⟨𝜓 | 𝑋 | 𝜓⟩, ⟨𝜓 | 𝑌 | 𝜓⟩, ⟨𝜓 | 𝑍 | 𝜓⟩).

Parameters spinor (list or qt.Qobj) – Spinor(s).

Returns xyz – (List of) cartesian coordinates.

Return type np.ndarray

8 Chapter 1. spheres
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1.2.10 spheres.coordinates.xyz_c

spheres.coordinates.xyz_c(xyz, pole='south')
Reverse Stereographic projection from the unit sphere to the extended complex plane.

Given (0, 0,−1), returns ∞.
Otherwise returns 𝑐 = ( 𝑥

1+𝑧 ) + 𝑖( 𝑦
1+𝑧 ).

Parameters

• xyz (list/np.ndarray) – Cartesian coordinates of point(s) on unit sphere.

• pole (str, default 'south') – Whether to reverse project from the North or South
pole.

Returns Extended complex coordinate(s).

Return type complex/inf or np.ndarray

1.2.11 spheres.coordinates.xyz_sph

spheres.coordinates.xyz_sph(xyz)
Converts cartesian coordinates (𝑥, 𝑦, 𝑧) to spherical coordinates (𝜃, 𝜑). We use the physicist’s convention:

inclination: 𝜃 = arccos 𝑧√
𝑥2+𝑦2+𝑧2

∈ [0, 𝜋]

azimuth 𝜑 = arctan 𝑦
𝑥 ∈ [0, 2𝜋]

Parameters xyz (list/np.ndarray) – (List of) Cartesian coordinates.

Returns sph – (List of) Spherical coordinates.

Return type np.ndarray

1.2.12 spheres.coordinates.xyz_spinor

spheres.coordinates.xyz_spinor(xyz)
Converts cartesian coordinates to a spinor by reverse stereographic projection to the extended complex plane,
and then lifting the latter to a 2-vector.

Parameters xyz (list/np.ndarray) – (List of) cartesian coordinates.

Returns spinor – Spinor(s).

Return type qt.Qobj or list

1.3 spheres.oscillators

Functions for dealing with oscillators, particularly in the case of double oscillators in the context of the Schwinger
representation of spin.

1.3. spheres.oscillators 9
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Functions

annihilators([n, cutoff_dim]) Constructs annihilators for a given number of oscillators
with given cutoff dimension.

osc_spin(osc[, map]) Returns (nonzero) spin-j states correspond to the 2D os-
cillator state (pure or mixed).

osc_spinblocks(O[, map]) Extracts spin-j blocks from a 2D oscillator operator.
osc_spins(q[, map]) Extracts spin-j states from a 2D oscillator state.
osc_spintower_map(cutoff_dim) Returns permutation from the tensor basis of two oscil-

lators to the basis organized by total N, in other words,
to a tower of spin states.

second_quantize_operator(O[, a]) Upgrades a first quantized operator to a second quan-
tized operator given a list of annihilators.

second_quantize_spin_state(spin[, a]) Upgrades a spin state to a second quantized creation op-
erator given a list of annihilators.

second_quantize_state(q[, a, state]) Upgrades a first quantized state to a second quantized
creation operator given a list of annihilators.

second_quantized_paulis([cutoff_dim]) Second quantized Pauli X, Y, Z operators on two har-
monic oscillators.

spin_osc(spin[, cutoff_dim, map]) Returns the 2D oscillator state corresponding to a given
spin-j state (pure or mixed).

spin_osc_map(j[, cutoff_dim]) Construct linear map from spin-j states into the Fock
space of the 2D quantum harmonic oscillator.

spin_tower_dimensions(d) Given the overal dimension of a spin tower, return the
individual dimensions of the spin states.

spinj_xyz_osc(osc[, paulis]) <X>, <Y>, <Z> expectation values on the given double
oscillator state.

spins_osc(spins[, cutoff_dim, map]) List of spin-j states to a 2D quantum harmonic oscillator
state.

vacuum([n, cutoff_dim]) Constructs vacuum state for a given number of oscilla-
tors with given cutoff dimension.

1.3.1 spheres.oscillators.annihilators

spheres.oscillators.annihilators(n=2, cutoff_dim=3)
Constructs annihilators for a given number of oscillators with given cutoff dimension.

Parameters

• n (int) – Number of oscillators.

• cutoff_dim (int) – Cutoff for the Fock space of the oscillators.

Returns a – List of annihilators.

Return type list

10 Chapter 1. spheres



spheres, Release 0.3.0.9

1.3.2 spheres.oscillators.osc_spin

spheres.oscillators.osc_spin(osc, map=None)
Returns (nonzero) spin-j states correspond to the 2D oscillator state (pure or mixed).

Parameters

• osc (qt.Qobj) – Double oscillator state.

• map (qt.Qobj) – Map from tensor basis to the spin tower basis. Automatically constructed
if not provided.

Returns spins – List of spins.

Return type list

1.3.3 spheres.oscillators.osc_spinblocks

spheres.oscillators.osc_spinblocks(O, map=None)
Extracts spin-j blocks from a 2D oscillator operator.

Parameters

• O (qt.Qobj) – 2D oscillator operator.

• map (qt.Qobj) – Map from tensor basis to the spin tower basis. Automatically constructed
if not provided.

Returns blocks – List of qt.Qobj operators appearing along the diagonal.

Return type list

1.3.4 spheres.oscillators.osc_spins

spheres.oscillators.osc_spins(q, map=None)
Extracts spin-j states from a 2D oscillator state.

Parameters

• q (qt.Qobj) – 2D oscillator state.

• map (qt.Qobj) – Map from tensor basis to the spin tower basis. Automatically constructed
if not provided.

Returns blocks – List of spins as qt.Qobj’s.

Return type list

1.3.5 spheres.oscillators.osc_spintower_map

spheres.oscillators.osc_spintower_map(cutoff_dim)
Returns permutation from the tensor basis of two oscillators to the basis organized by total N, in other words,
to a tower of spin states. Automatically padded so that higher spins whose full Hilbert space is truncated by the
cutoff dimension have the right dimensionality.

Parameters cutoff_dim (int) – Cutoff dimension of the Fock spaces.

Returns P – Permutation operator.

Return type qt.Qobj

1.3. spheres.oscillators 11
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1.3.6 spheres.oscillators.second_quantize_operator

spheres.oscillators.second_quantize_operator(O, a=None)
Upgrades a first quantized operator to a second quantized operator given a list of annihilators. If no annihilators
provided, it constructs them.

Parameters

• O (qt.Qobj) – First quantized operator.

• a (list) – List of annihilators.

Returns OO – Second quantized operator.

Return type qt.Qobj

1.3.7 spheres.oscillators.second_quantize_spin_state

spheres.oscillators.second_quantize_spin_state(spin, a=None)
Upgrades a spin state to a second quantized creation operator given a list of annihilators. If the annihilators
aren’t provided, they are constructed.

Parameters

• spin (qt.Qobj) – Spin-j state.

• a (list) – List of annihilators.

Returns S – Second quantized creation operator for the constellation.

Return type qt.Qobj

1.3.8 spheres.oscillators.second_quantize_state

spheres.oscillators.second_quantize_state(q, a=None, state=False)
Upgrades a first quantized state to a second quantized creation operator given a list of annihilators. If the
annihilators aren’t provided, they are constructed.

Parameters

• q (qt.Qobj) – First quantized state.

• a (list) – List of annihilators.

• state (bool) – If True, returns the second quantized state itself, obtained by acting with
the creation operator on the vacuum.

Returns Q – Second quantized creation operator (or state).

Return type qt.Qobj

12 Chapter 1. spheres
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1.3.9 spheres.oscillators.second_quantized_paulis

spheres.oscillators.second_quantized_paulis(cutoff_dim=3)
Second quantized Pauli X, Y, Z operators on two harmonic oscillators.

Parameters cutoff_dim (int) – Cutoff dimensions for the oscillator Fock spaces.

Returns XYZ – Dictionary of operators {“X”: X, “Y”: Y, “Z”: Z}.

Return type dict

1.3.10 spheres.oscillators.spin_osc

spheres.oscillators.spin_osc(spin, cutoff_dim=None, map=None)
Returns the 2D oscillator state corresponding to a given spin-j state (pure or mixed).

Parameters

• spin (qt.Qobj) – Spin-j state.

• cutoff_dim (int) – Cutoff dimension.

• map (qt.Qobj) – Map from spin-j Hilbert space to double harmonic oscillator space.
Constructed if not provided.

Returns osc – 2D quantum harmonic oscillator state.

Return type qt.Qobj

1.3.11 spheres.oscillators.spin_osc_map

spheres.oscillators.spin_osc_map(j, cutoff_dim=None)
Construct linear map from spin-j states into the Fock space of the 2D quantum harmonic oscillator.

Parameters

• j (float) – j-value of the spin.

• cutoff_dim (int) – Cutoff dimensions of the Fock space.

Returns map – Linear map from spin-j Hilbert space to the Fock space of the 2D oscillator.

Return type qt.Qobj

1.3.12 spheres.oscillators.spin_tower_dimensions

spheres.oscillators.spin_tower_dimensions(d)
Given the overal dimension of a spin tower, return the individual dimensions of the spin states. E.g., 15 = 1 + 2
+ 3 + 4 + 5

Parameters d (int) – Overall dimension.

Returns dims – Individual dimensions.

Return type list

1.3. spheres.oscillators 13
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1.3.13 spheres.oscillators.spinj_xyz_osc

spheres.oscillators.spinj_xyz_osc(osc, paulis=None)
<X>, <Y>, <Z> expectation values on the given double oscillator state.

Parameters

• osc (qt.Qobj) – Double oscillator state.

• paulis (dict) – Dictionary of second quantized Pauli’s. Constructed if not provided.

Returns xyz – Array of Pauli expectation values.

Return type np.ndarray

1.3.14 spheres.oscillators.spins_osc

spheres.oscillators.spins_osc(spins, cutoff_dim=None, map=None)
List of spin-j states to a 2D quantum harmonic oscillator state.

Parameters

• osc (qt.Qobj) – Double oscillator state.

• cutoff_dim (int) – Cutoff dimension for the 2D oscillator Fock space.

• map (qt.Qobj) – Map from tensor basis to the spin tower basis. Automatically constructed
if not provided.

Returns osc – Double oscillator state.

Return type qt.Qobj

1.3.15 spheres.oscillators.vacuum

spheres.oscillators.vacuum(n=2, cutoff_dim=3)
Constructs vacuum state for a given number of oscillators with given cutoff dimension.

Parameters

• n (int) – Number of oscillators.

• cutoff_dim (int) – Cutoff for the Fock space of the oscillators.

Returns vac – Vacuum state with the right tensor dimensions.

Return type qt.Qobj

1.4 spheres.polyhedra

Polyhedra related functions.

14 Chapter 1. spheres
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Functions

equidistribute_points(n[, verbose]) Returns n more or less equidistributed points on the
sphere.

1.4.1 spheres.polyhedra.equidistribute_points

spheres.polyhedra.equidistribute_points(n, verbose=False)
Returns n more or less equidistributed points on the sphere.

Thanks to https://www.chiark.greenend.org.uk/~sgtatham/polyhedra/

Parameters

• n (int) – Number of points.

• verbose (bool) –

Returns points

Return type list

1.5 spheres.relativity

Functions related to Lorentz transformations/Mobius transformations.

Functions

mobius(abcd) Given parameters
(︂
𝑎 𝑏
𝑏 𝑐

)︂
, arranged in a 2x2 matrix,

returns a function which implements the corresponding
Möbius transformation

1.5.1 spheres.relativity.mobius

spheres.relativity.mobius(abcd)

Given parameters
(︂
𝑎 𝑏
𝑏 𝑐

)︂
, arranged in a 2x2 matrix, returns a function which implements the corresponding

Möbius transformation

𝑓(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

which acts on the extended complex plane. Note that if 𝑐 ̸= 0, we have:

𝑓(−𝑑
𝑐

) = ∞

𝑓(∞) =
𝑎

𝑐

And if 𝑐 = 0, we have:

𝑓(∞) = ∞
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Parameters abcd (np.ndarray or qt.Qobj) – 2x2 matrix representing Möbius parameters.

Returns mobius – A function which takes an extended complex coordinate as input, and returns an
extended complex coordinate as output.

Return type func

Raises Exception – If 𝑎𝑑 = 𝑏𝑐, then 𝑓(𝑧) = 𝑎
𝑐 , a constant function, which doesn’t qualify as a

Möbius transformation.

1.6 spheres.spin_circuits

Modules

spheres.spin_circuits.pytket Pytket circuits for preparing spin-j states as permutation
symmetric multiqubit states.

spheres.spin_circuits.qiskit Qiskit circuits for preparing spin-j states as permutation
symmetric multiqubit states.

spheres.spin_circuits.
strawberryfields

StrawberryFields circuits for preparing spin-j states.

1.6.1 spheres.spin_circuits.pytket

Pytket circuits for preparing spin-j states as permutation symmetric multiqubit states.

Functions

Rk_pytket(k[, dagger]) Single qubit operator employed in symmetrization cir-
cuit to prepare control qubits.

Tkj_pytket(k, j[, dagger]) Two qubit operator employed in symmetrization circuit
to prepare control qubits.

postselect_shots(postselection_indices, . . . ) Given an array of shots data, postselects on certain bits
having certain values.

spin_sym_pytket(spin) Given a spin-j state, constructs a qiskit circuit which
prepares that state as a permutation symmetric state of
2j qubits.

spin_tomography_pytket(circ_info[, backend,
. . . ])

Given a Pytket circuit preparing a spin state, runs to-
mography to reconstruct the density matrix.

tomography_circuits_pytket(circuit[,
on_qubits])

Given a pytket circuit and a list of qubits, constructs
a set of circuits that implement tomography on those
qubits.

tomography_dm_pytket(tomog_circs_info, . . . ) Given a set of Pytket tomography circuits and the re-
sults of measurements (shots), reconstructs the density
matrix of the quantum state.
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spheres.spin_circuits.pytket.Rk_pytket

spheres.spin_circuits.pytket.Rk_pytket(k, dagger=False)
Single qubit operator employed in symmetrization circuit to prepare control qubits.

Parameters

• k (int) –

• dagger (bool) – Whether to return the adjoint.

Returns O

Return type pytket.circuit.Unitary1qBox

spheres.spin_circuits.pytket.Tkj_pytket

spheres.spin_circuits.pytket.Tkj_pytket(k, j, dagger=False)
Two qubit operator employed in symmetrization circuit to prepare control qubits.

Parameters

• k (int) –

• j (int) –

• dagger (bool) – Whether to return the adjoint.

Returns O

Return type pytket.circuit.Unitary2qBox

spheres.spin_circuits.pytket.postselect_shots

spheres.spin_circuits.pytket.postselect_shots(postselection_indices, postselec-
tion_values, original_shots)

Given an array of shots data, postselects on certain bits having certain values.

Parameters

• postselection_indices (list) – Indices to postselect on.

• postselection_values (list) – Desired values for each index.

• original_shots (list) – Shots data.

Returns postselected_shots

Return type list

spheres.spin_circuits.pytket.spin_sym_pytket

spheres.spin_circuits.pytket.spin_sym_pytket(spin)
Given a spin-j state, constructs a qiskit circuit which prepares that state as a permutation symmetric state of 2j
qubits. The circuit is probabalistic and depends on the control qubits being postselected on the up/0 state.

Returns a dictionary whose elements are:

• “circuit”: Qiskit circuit

• “spin_qubits”: Qiskit quantum register for the qubits encoding the spin
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• “cntrl_qubits”: Qiskit quantum register for the control qubits

• “cntrl_bits”: Qiskit classical register for the control measurements

• “postselect_on”: “cntrl_bits” (which classical register to control on)

• “postselection”: [0] x len(cntrl_bits) (postselection state to impose)

Parameters spin (qt.Qobj) – Spin-j state.

Returns circuit_info

Return type dict

spheres.spin_circuits.pytket.spin_tomography_pytket

spheres.spin_circuits.pytket.spin_tomography_pytket(circ_info, backend=None,
shots=8000)

Given a Pytket circuit preparing a spin state, runs tomography to reconstruct the density matrix.

Parameters

• circ_info (dict) – Information about the Pytket circuit.

• backend (pytket.backend.Backend) –

• shots (int) –

Returns dm

Return type qt.Qobj

spheres.spin_circuits.pytket.tomography_circuits_pytket

spheres.spin_circuits.pytket.tomography_circuits_pytket(circuit, on_qubits=None)
Given a pytket circuit and a list of qubits, constructs a set of circuits that implement tomography on those qubits.

Parameters

• circuit (pytket.Circuit) –

• on_qubits (list) – If not provided, tomography performed on all qubits.

Returns

tomography_circuit_info –

List of tomography circuits. Each element is a dictionary:

• ”circuit”: Pytket circuit

• ”pauli”: Pauli string corresponding to circuit

• ”tomog_bits”: Pytket register.

Return type list
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spheres.spin_circuits.pytket.tomography_dm_pytket

spheres.spin_circuits.pytket.tomography_dm_pytket(tomog_circs_info, tomog_shots)
Given a set of Pytket tomography circuits and the results of measurements (shots), reconstructs the density
matrix of the quantum state.

Parameters

• tomog_circs_info (dict) –

• tomog_shots (list) –

Returns dm

Return type qt.Qobj

1.6.2 spheres.spin_circuits.qiskit

Qiskit circuits for preparing spin-j states as permutation symmetric multiqubit states.

Functions

Rk_qiskit(k) Single qubit operator employed in symmetrization cir-
cuit to prepare control qubits.

Tkj_qiskit(k, j) Two qubit operator employed in symmetrization circuit
to prepare control qubits.

postselect_results_qiskit(circ_info,
raw_results)

Performs postselection on Qiskit results given informa-
tion in the provided dictionary.

spin_sym_qiskit(spin) Given a spin-j state, constructs a qiskit circuit which
prepares that state as a permutation symmetric state of
2j qubits.

spin_tomography_qiskit(circ_info[, . . . ]) Performs tomography on the provided symmetric mul-
tiqubit circuit, given postselection on the control qubits.

spheres.spin_circuits.qiskit.Rk_qiskit

spheres.spin_circuits.qiskit.Rk_qiskit(k)
Single qubit operator employed in symmetrization circuit to prepare control qubits.

Parameters k (int) –

Returns O

Return type qiskit.quantum_info.operators.Operator
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spheres.spin_circuits.qiskit.Tkj_qiskit

spheres.spin_circuits.qiskit.Tkj_qiskit(k, j)
Two qubit operator employed in symmetrization circuit to prepare control qubits.

Parameters

• k (int) –

• j (int) –

Returns O

Return type qiskit.quantum_info.operators.Operator

spheres.spin_circuits.qiskit.postselect_results_qiskit

spheres.spin_circuits.qiskit.postselect_results_qiskit(circ_info, raw_results)
Performs postselection on Qiskit results given information in the provided dictionary.

Removes classical registers corresponding to circ_info[“postselect_on”], leaving only those results with satisfy
circ_info[“postselection”].

Parameters

• circ_info (dict) –

• raw_results (qiskit.Result) –

Returns postselected_results

Return type qiskit.Result

spheres.spin_circuits.qiskit.spin_sym_qiskit

spheres.spin_circuits.qiskit.spin_sym_qiskit(spin)
Given a spin-j state, constructs a qiskit circuit which prepares that state as a permutation symmetric state of 2j
qubits. The circuit is probabalistic and depends on the control qubits being postselected on the up/0 state.

Returns a dictionary whose elements are:

• “circuit”: Qiskit circuit

• “spin_qubits”: Qiskit quantum register for the qubits encoding the spin

• “cntrl_qubits”: Qiskit quantum register for the control qubits

• “cntrl_bits”: Qiskit classical register for the control measurements

• “postselect_on”: “cntrl_bits” (which classical register to control on)

• “postselection”: “0” x len(cntrl_bits) (postselection state to impose)

Parameters spin (qt.Qobj) – Spin-j state.

Returns circuit_info

Return type dict
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spheres.spin_circuits.qiskit.spin_tomography_qiskit

spheres.spin_circuits.qiskit.spin_tomography_qiskit(circ_info, back-
end_name='qasm_simulator',
shots=8000)

Performs tomography on the provided symmetric multiqubit circuit, given postselection on the control qubits.

Parameters

• circ_info (dict) –

• backend_name (str) – Qiskit backend.

• shots (int) – Number of shots.

Returns dm – Reconstructed spin-j density matrix.

Return type qt.Qobj

1.6.3 spheres.spin_circuits.strawberryfields

StrawberryFields circuits for preparing spin-j states.

Functions

spin_osc_strawberryfields(spin) Returns a StrawberryFields circuit that prepares a given
spin-j state as a state of two photonic oscillator modes.

spinj_xyz_strawberryfields(state[, . . . ]) Returns XYZ expectation values of a spin encoded in
two oscillator modes.

spheres.spin_circuits.strawberryfields.spin_osc_strawberryfields

spheres.spin_circuits.strawberryfields.spin_osc_strawberryfields(spin)
Returns a StrawberryFields circuit that prepares a given spin-j state as a state of two photonic oscillator modes.

Parameters spin (qt.Qobj) – Spin-j state.

Returns prog – StrawberryFields circuit.

Return type sf.Program

spheres.spin_circuits.strawberryfields.spinj_xyz_strawberryfields

spheres.spin_circuits.strawberryfields.spinj_xyz_strawberryfields(state,
on_modes=[0,
1],
XYZ=None)

Returns XYZ expectation values of a spin encoded in two oscillator modes.

Parameters

• state (strawberryfields.state) –

• on_modes (list) – Two modes encoding the spin, e.g., [0,1].

• XYZ (dict) – XYZ operators as real symplectic matrices. Constructed if not provided.
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Returns xyz – XYZ expectation values.

Return type np.array

1.7 spheres.stabilization

Modules

spheres.stabilization.pytket Pytket circuits for error stabilization via symmetriza-
tion.

1.7.1 spheres.stabilization.pytket

Pytket circuits for error stabilization via symmetrization.

Functions

bitflip_noise_model([n_qubits, on_qubits]) Bitflip noise model.
build_pytket_circuit(circuit_info) Given a circuit specification (from random_circuit()),

constructs the actual pytket circuit.
eval_pytket_circuit_ibm(circuit[, . . . ]) Evaluates pytket circuit on IBM backend.
eval_pytket_symmetrization_performance([. . . ])Compares the performance of a random circuit with and

without symmetrization.
eval_symmetrized_pytket_circuit(circ_info[,
. . . ])

Evaluates a symmetrized version of the provided circuit
in the form of a dictionary (cf.

ibmq_16_melbourne_noise_model([n_qubits,
. . . ])

ibmq_16_melbourne_noise_model noise model.

plot_symmetrization_performance(parameter,
. . . )

Given a parameter (e.g.

process_symmetrized_pytket_counts(. . . )
param sym_circ_info Symmetrized

circuit info, i.e. from sym-
metrize_pytket_circuit.

pytket_qiskit_counts(counts) Converts pytket counts into qiskit format.
qiskit_error_calibration(n_qubits,
noise_model)

Initializes Qiskit error calibration.

qiskit_pytket_counts(counts) Converts qiskit counts into pytket format.
random_pairs(n) Generates a random list of pairs of n elements.
random_pytket_circuit([n_qubits, depth]) Generates a random circuit specification with a specified

number of qubits and depth.
random_unique_pairs(n) Generates a random list of pairs of n elements with no

pair sharing an element.
symmetrize_pytket_circuit(circuit_info[,
. . . ])

Given a circuit specification, constructs a symmetrized
version of the circuit for error correction.

thermal_noise_model([n_qubits, on_qubits]) Thermal noise model.
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spheres.stabilization.pytket.bitflip_noise_model

spheres.stabilization.pytket.bitflip_noise_model(n_qubits=None, on_qubits=None)
Bitflip noise model.

Parameters

• n_qubits (int) –

• on_qubits (list) –

Returns noise_model

Return type qiskit noise model

spheres.stabilization.pytket.build_pytket_circuit

spheres.stabilization.pytket.build_pytket_circuit(circuit_info)
Given a circuit specification (from random_circuit()), constructs the actual pytket circuit.

Parameters circuit_info (dict) –

Returns circuit

Return type pytket.Circuit

spheres.stabilization.pytket.eval_pytket_circuit_ibm

spheres.stabilization.pytket.eval_pytket_circuit_ibm(circuit, noise_model=None,
shots=8000, backend=None,
analytic=False)

Evaluates pytket circuit on IBM backend.

Parameters

• circuit (pytket.Circuit) –

• noise_mode (qiskit.providers.aer.noise.NoiseModel) –

• shots (int) –

• backend (qiskit backend) –

• analytic (bool) – Whether to process the circuit analytically.

Returns counts – Dictionary of counts (or distribution if analytic).

Return type dict
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spheres.stabilization.pytket.eval_pytket_symmetrization_performance

spheres.stabilization.pytket.eval_pytket_symmetrization_performance(n_qubits=2,
depth=3,
n_copies=2,
every=1,
pair-
wise=True,
noise_model=None,
noise_model_name='',
er-
ror_on_all=True,
back-
end=None,
shots=8000)

Compares the performance of a random circuit with and without symmetrization.

Parameters

• n_qubits (int) – Number of qubits in the original circuit.

• depth (int) – Number of layers in the original circuit.

• n_copies (int) – Number of copies of original circuit to symmetrize over.

• every (int) – How often to symmetrize.

• pairwise (bool) – Whether to symmetrize across all circuit copies or just pairwise.

• noise_model (func) – A function which takes (n_qubits, on_qubits) and returns a qiskit
error model.

• noise_model_name (str) – Name for the noise model.

• error_on_all (bool) – Whether to apply noise to all qubits, including controls, or
whether to exclude the controls.

• backend (qiskit backend) –

• shots (int) – Number of shots.

Returns experiment – Dictionary of information about the experiment run.

Return type dict

spheres.stabilization.pytket.eval_symmetrized_pytket_circuit

spheres.stabilization.pytket.eval_symmetrized_pytket_circuit(circ_info,
n_copies=2,
every=1, pair-
wise=False,
noise_model=None,
backend=None,
shots=8000)

Evaluates a symmetrized version of the provided circuit in the form of a dictionary (cf. random_pytket_circuit).

Parameters

• circ_info (dict) –

• n_copies (int) –
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• every (int) –

• pairwise (bool) –

• noise_model (qiskit.providers.aer.noise.NoiseModel) –

• backend (qiskit backend) –

• shots (int) –

Returns dists

Return type dict

spheres.stabilization.pytket.ibmq_16_melbourne_noise_model

spheres.stabilization.pytket.ibmq_16_melbourne_noise_model(n_qubits=None,
on_qubits=None)

ibmq_16_melbourne_noise_model noise model.

Parameters

• n_qubits (int) –

• on_qubits (list) –

Returns noise_model

Return type qiskit noise model

spheres.stabilization.pytket.plot_symmetrization_performance

spheres.stabilization.pytket.plot_symmetrization_performance(parameter, experi-
ments)

Given a parameter (e.g. “depth”) and a list of symmetrization experiments, plots the error varying the parameter.

Parameters

• parameter (str) – Could be “n_qubits”, “depth”, “n_copies”, “every”, “pairwise”,
“noise_model_name”, “error_on_all”.

• experiments (list) – List of experiments returned by
eval_pytket_symmetrization_performance.

spheres.stabilization.pytket.process_symmetrized_pytket_counts

spheres.stabilization.pytket.process_symmetrized_pytket_counts(sym_circ_info,
sym_circ_counts)

Parameters

• sym_circ_info (dict) – Symmetrized circuit info, i.e. from sym-
metrize_pytket_circuit.

• sym_circ_counts (dict) – Dictionary of empirical counts.

Returns

results –

• “exp_dists”: Distribution of outcomes for each experiment.

• ”avg_dists”: Average distribution of outcomes across the experiments.
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Return type dict

spheres.stabilization.pytket.pytket_qiskit_counts

spheres.stabilization.pytket.pytket_qiskit_counts(counts)
Converts pytket counts into qiskit format.

Parameters pyt_counts (dict) – Pytket counts.

Returns qis_counts – Qiskit counts.

Return type dict

spheres.stabilization.pytket.qiskit_error_calibration

spheres.stabilization.pytket.qiskit_error_calibration(n_qubits, noise_model,
use_remote_simulator=False,
shots=8000)

Initializes Qiskit error calibration.

Parameters

• n_qubits (int) –

• noise_model (qiskit noise model) –

• use_remote_simulator (bool) –

Returns filter

Return type qiskit noise filter

spheres.stabilization.pytket.qiskit_pytket_counts

spheres.stabilization.pytket.qiskit_pytket_counts(counts)
Converts qiskit counts into pytket format.

Parameters qis_counts (dict) – Qiskit counts.

Returns pyt_counts – Pytket counts.

Return type dict

spheres.stabilization.pytket.random_pairs

spheres.stabilization.pytket.random_pairs(n)
Generates a random list of pairs of n elements.

Parameters n (int) –

Returns list

Return type list
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spheres.stabilization.pytket.random_pytket_circuit

spheres.stabilization.pytket.random_pytket_circuit(n_qubits=1, depth=1)
Generates a random circuit specification with a specified number of qubits and depth. Returns a dictionary
containing a history of gates, divided into layers. We don’t return a circuit itself so we can continue to manipulate
the circuit.

Parameters

• n_qubits (int) –

• depth (int) –

Returns

circ_info –

• “history”: a list of circuit layers, each of which contains a list of dicts with keys “gate”:
(‘H’, ‘S’, ‘T’, or ‘CX’) and “to”: list of qubits.

• ”gate_map”: a dictionary mapping gate strings to functions that take a circuit and
qubit indices and add the gate to the circuit

• ”n_qubits”

• ”depth”

Return type dict

spheres.stabilization.pytket.random_unique_pairs

spheres.stabilization.pytket.random_unique_pairs(n)
Generates a random list of pairs of n elements with no pair sharing an element.

Parameters n (int) –

Returns list

Return type list

spheres.stabilization.pytket.symmetrize_pytket_circuit

spheres.stabilization.pytket.symmetrize_pytket_circuit(circuit_info, n_copies=2,
every=1, pairwise=False,
reuse_cntrls=False, mea-
sure=True)

Given a circuit specification, constructs a symmetrized version of the circuit for error correction.

Parameters

• circuit_info (dict) – Dictionary of circuit information.

• n_copies (int) – Number of copies of the original circuit to evaluate in parallel.

• every (int) – How often to perform symmetrization, i.e. every every layers.

• pairwise (bool) – Whether to symmetrize across all circuit copies or across circuit pairs.

• reuse_cntrls (bool) – Whether to to reuse control qubits from symmetrization to sym-
metrization. Only useful on quantum computers that allow for intermediate measurements.

• measure (bool) – Whether to measure all the non-control qubits in the end.
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Returns

circuit_info –

• “circuit”: pytket.Circuit

• ”n_copies”

• ”every”

• ”pairwise”

• ”reuse_cntrls”

• ”measure”

• ”original”: original circ_info dict

• ”qubit_registers”: list of qubit registers for each ‘experiment’

• ”cbit_registers”: list of bit registers for each ‘experiment’

• ”cntrl_qubits”: list of control qubits for each symmetrization

• ”cntrl_bits”: list of control bits for each symmetrization

Return type dict

spheres.stabilization.pytket.thermal_noise_model

spheres.stabilization.pytket.thermal_noise_model(n_qubits=None, on_qubits=None)
Thermal noise model.

Parameters

• n_qubits (int) –

• on_qubits (list) –

Returns noise_model

Return type qiskit noise model

1.8 spheres.stars

Modules

spheres.stars.mixed Implementation of the “Majorana stars” formalism for
mixed states (and operators) of higher spin.

spheres.stars.pure Implementation of the “Majorana stars” formalism for
pure states of higher spin.

spheres.stars.star_utils Useful Majorana star related functions.
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1.8.1 spheres.stars.mixed

Implementation of the “Majorana stars” formalism for mixed states (and operators) of higher spin.

Functions

operator_spherical_decomposition(O[,
T_basis])

Decomposes an operator into a linear combination of
spherical tensors.

operator_spins(O[, T_basis]) Expresses an operator as a set of spins.
spherical_decomposition_operator(decomposition)Recomposes an operator from its spherical tensor de-

composition.
spherical_decomposition_spins(decomposition)Expresses the spherical tensor decomposition of an op-

erator as a list of unnormalized, integer 𝑗 spin states.
spherical_tensor(j, sigma, mu) Constructs spherical tensor operator for a given 𝑗, 𝜎, 𝜇.
spherical_tensor_basis(j) Constructs a basis set of spherical tensor operators for a

given 𝑗, for all 𝜎 from 0 to 2𝑗, and 𝜇 from −𝜎 to 𝜎.
spins_operator(spins[, T_basis]) Recomposes an operator, given a list of spin states.
spins_spherical_decomposition(spins) Converts a list of spin states back into a dictionary of

spherical tensor coefficients.

spheres.stars.mixed.operator_spherical_decomposition

spheres.stars.mixed.operator_spherical_decomposition(O, T_basis=None)
Decomposes an operator into a linear combination of spherical tensors. Constructs the latter if not supplied.
Returns the coefficients as a dictionary for each 𝜎, 𝜇.

Parameters

• O (qt.Qobj) –

• T_basis (dict) –

Returns T_coeffs – Takes (sigma, mu) to the corresponding coefficient.

Return type dict

spheres.stars.mixed.operator_spins

spheres.stars.mixed.operator_spins(O, T_basis=None)
Expresses an operator as a set of spins. Constructs the spherical tensor basis if not provided. This is a generaliza-
tion of the Majorana representation: for an operator, instead of one constellation, we have several constellations
on concentric spheres, whose radii can be interpreted as the norms of the spin states. They transform nicely
under rotations and partial traces. Hermitian operators have constellations with antipodal symmetry, which is
broken by unitary operators.

Parameters

• O (qt.Qobj) –

• T_basis (dict) –

Returns spins

Return type list
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spheres.stars.mixed.spherical_decomposition_operator

spheres.stars.mixed.spherical_decomposition_operator(decomposition,
T_basis=None)

Recomposes an operator from its spherical tensor decomposition. Constructs the latter if not supplied.

Parameters

• decomposition (dict) – Takes (sigma, mu) to the corresponding coefficient.

• T_basis (dict) –

Returns operator

Return type qt.Qobj

spheres.stars.mixed.spherical_decomposition_spins

spheres.stars.mixed.spherical_decomposition_spins(decomposition)
Expresses the spherical tensor decomposition of an operator as a list of unnormalized, integer 𝑗 spin states.

Parameters decomposition (dict) – Takes (sigma, mu) to the corresponding coefficient.

Returns list – List of spin states.

Return type list

spheres.stars.mixed.spherical_tensor

spheres.stars.mixed.spherical_tensor(j, sigma, mu)
Constructs spherical tensor operator for a given 𝑗, 𝜎, 𝜇.

Parameters

• j (float) –

• sigma (int) – Between 0 and 2j.

• mu (int) – Between -sigma and sigma.

Returns spherical_tensor

Return type qt.Qobj

spheres.stars.mixed.spherical_tensor_basis

spheres.stars.mixed.spherical_tensor_basis(j)
Constructs a basis set of spherical tensor operators for a given 𝑗, for all 𝜎 from 0 to 2𝑗, and 𝜇 from −𝜎 to 𝜎.

Parameters j (float) –

Returns spherical_tensor_basis – Takes (sigma, mu) to the corresponding tensor.

Return type dict
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spheres.stars.mixed.spins_operator

spheres.stars.mixed.spins_operator(spins, T_basis=None)
Recomposes an operator, given a list of spin states. Constructs the spherical tensor basis if not provided.

Parameters spins (list) –

Returns operator

Return type qt.Qobj

spheres.stars.mixed.spins_spherical_decomposition

spheres.stars.mixed.spins_spherical_decomposition(spins)
Converts a list of spin states back into a dictionary of spherical tensor coefficients.

Parameters spins (list) – List of spins.

Returns decomposition – Takes (sigma, mu) to the corresponding coefficient.

Return type dict

1.8.2 spheres.stars.pure

Implementation of the “Majorana stars” formalism for pure states of higher spin.

Functions

c_spin(c) Takes 2j roots on the extended complex plane and re-
turns the corresponding spin-j state (up to complex
phase).

poly_roots(poly) Takes a Majorana polynomial to its roots.
poly_spin(poly) Converts a Majorana polynomial into a spin-j state.
roots_poly(roots) Takes a set of points on the extended complex plane and

forms the polynomial which has these points as roots.
sph_spin(sph) Takes 2j “stars” given in spherical coordinates and re-

turns the corresponding spin-j state (up to complex
phase).

spin_c(spin) Takes a spin-j state and returns its decomposition into 2j
roots on the extended complex plane.

spin_poly(spin[, projective, homogeneous, . . . ]) Converts a spin into its Majorana polynomial, which is
defined as follows:

spin_sph(spin) Takes a spin-j state and returns its decomposition into 2j
“stars” given in spherical coordinates.

spin_spinors(spin) Takes a spin-j state and returns its decomposition into 2j
spinors.

spin_xyz(spin) Takes a spin-j state and returns the cartesian coordinates
on the unit sphere corresponding to its “Majorana stars.”
Each contributes a quantum of angular momentum 1

2 to
the overall spin.

spinors_spin(spinors) Given 2j spinors returns the corresponding spin-j state
(up to phase).

continues on next page
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Table 15 – continued from previous page
xyz_spin(xyz) Given the cartesian coordinates of a set of “Majorana

stars,” returns the corresponding spin-j state, which is
defined only up to complex phase.

spheres.stars.pure.c_spin

spheres.stars.pure.c_spin(c)
Takes 2j roots on the extended complex plane and returns the corresponding spin-j state (up to complex phase).

Parameters c (list) – 2j extended complex roots.

Returns spin – Spin-j state.

Return type qt.Qobj

spheres.stars.pure.poly_roots

spheres.stars.pure.poly_roots(poly)
Takes a Majorana polynomial to its roots. We use numpy’s polynomial solver. The number of initial coefficients
which are 0 are intepreted as the number of roots at ∞. In other words, to the extent that the degree of a
Majorana polynomial corresponding to a spin-j state is less than 2j+1, we add that many roots at ∞.

Parameters poly (np.ndarray) – 2j+1 Majorana polynomial coefficients.

Returns roots – Roots on the extended complex plane.

Return type list

spheres.stars.pure.poly_spin

spheres.stars.pure.poly_spin(poly)
Converts a Majorana polynomial into a spin-j state.

Parameters poly (np.ndarray) – 2j+1 Majorana polynomial coefficients.

Returns spin – Spin-j state.

Return type qt.Qobj

spheres.stars.pure.roots_poly

spheres.stars.pure.roots_poly(roots)
Takes a set of points on the extended complex plane and forms the polynomial which has these points as roots.
Roots at ∞ turn into initial zero coefficients.

Parameters roots (list) – Roots on the extended complex plane.

Returns poly – 2j+1 Majorana polynomial coefficients.

Return type np.ndarray
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spheres.stars.pure.sph_spin

spheres.stars.pure.sph_spin(sph)
Takes 2j “stars” given in spherical coordinates and returns the corresponding spin-j state (up to complex phase).

Parameters sph (np.array) – A array with shape (2j, 3) containing the 2j spherical coordinates
of the stars.

Returns spin – Spin-j state.

Return type qt.Qobj

spheres.stars.pure.spin_c

spheres.stars.pure.spin_c(spin)
Takes a spin-j state and returns its decomposition into 2j roots on the extended complex plane.

Parameters spin (qt.Qobj) – Spin-j state.

Returns c – 2j extended complex roots.

Return type list

spheres.stars.pure.spin_poly

spheres.stars.pure.spin_poly(spin, projective=False, homogeneous=False, cartesian=False,
spherical=False, normalized=False, for_integration=False)

Converts a spin into its Majorana polynomial, which is defined as follows:

𝑝(𝑧) =

𝑚=𝑗∑︁
𝑚=−𝑗

(−1)𝑗+𝑚

√︃
(2𝑗)!

(𝑗 −𝑚)!(𝑗 +𝑚)!
𝑎𝑗+𝑚𝑧

𝑗−𝑚

Here, the 𝑎’s run through the components of the spin in the | 𝑗,𝑚⟩ representation. Note that (2𝑗)!
(𝑗−𝑚)!(𝑗+𝑚)!

amounts to:
(︀

2𝑗
𝑗+𝑚

)︀
, a binomial coefficient.

By default, returns the coefficients of the Majorana polynomial as an np.ndarray.

If projective=True, returns a function which takes an (array of) extended complex coordinate(s) as an argument,
and which evaluates the polynomial at that/those point(s). Note that to evaluate the polynomial at ∞, we flip
the stereographic projection axis and evaluate the latter polynomial at 0 (and then complex conjugate). Insofar
as pole flipping causes the highest degree term to become the lowest degree/constant term, evaluating at ∞
amounts to returning the first coefficient.

If homogeneous=True, returns a function which takes a spinor (as an nd.array or qt.Qobj) and evaluates the
(unnormalized) homogeneous Majorana polynomial:

𝑝(𝑧, 𝑤) =

𝑚=𝑗∑︁
𝑚=−𝑗

(−1)𝑗+𝑚

√︃
(2𝑗)!

(𝑗 −𝑚)!(𝑗 +𝑚)!
𝑎𝑗+𝑚𝑤

𝑗−𝑚𝑧𝑗+𝑚

If cartesian=True, returns a function with takes cartesian coordinates and evaluates the Majorana polynomial
by first converting the cartesian coordinates to extended complex coordinates.

If spherical=True, returns a function with takes spherical coordinates and evaluates the Majorana polynomial
by first converting the spherical coordinates to extended complex coordinates.
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If normalized=True, returns the normalized versions of any of the above functions. Note that the normalized
versions are no longer analytic/holomorphic. Given a extended complex coordinate 𝑧 = 𝑟𝑒𝑖𝜃 (or ∞), the
normalization factor is:

𝑒−2𝑖𝑗𝜃

(1 + 𝑟2)𝑗

If 𝑧 = ∞, again since we flip the poles, we use 𝑧 = 0.

If for_integration=True, returns normalized function that takes spherical coordinates, with an extra normaliza-

tion factor of
√︁

2𝑗+1
4𝜋 so that the integral over the sphere gives a normalized amplitude. Note that coordinates

must be given in the form of [[𝜃’s], [𝜑’s]].

When normalized, evaluating the Majorana polynomial is equivalent to evaluating:

⟨−𝑥𝑦𝑧 | 𝜓⟩

Where | 𝑥𝑦𝑧⟩ refers to the spin coherent state which has all its “stars” at cartesian coordinates 𝑥, 𝑦, 𝑧, and | 𝜓⟩
is the spin in the | 𝑗,𝑚⟩ representation. In other words, evaluating a normalized Majorana function at 𝑥, 𝑦, 𝑧 is
equivalent to evaluating:

spin_coherent(j, -xyz).dag()*spin

Which is the inner product between the spin and the spin coherent state antipodal to 𝑥, 𝑦, 𝑧 on the sphere. Since
the Majorana stars are zeros of this function, we can interpret them as picking out those directions for which
there’s 0 probability that all the angular momentum is concentrated in the opposite direction. Insofar as we
can think of each star as contributing a quantum of angular momentum 1

2 in that direction, naturally there’s
no chance that all the angular momentum is concentrated opposite to any of those points. By the fundamental
theorem of algebra, knowing these points is equivalent to knowing the entire quantum state.

Parameters

• spin (qt.Qobj) – Spin-j state.

• projective (bool, optional) – Whether to return Majorana polynomial as a func-
tion of an extended complex coordinate.

• homogeneous (bool, optional) – Whether to return Majorana polynomial as a func-
tion of a spinor.

• cartesian (bool, optional) – Whether to return Majorana polynomial as a function
of cartesian coordinates on unit sphere.

• spherical (bool, optional) – Whether to return Majorana polynomial as a function
of spherical coordinates.

• normalize (bool, optional) – Whether to normalize the above functions.

• for_integration (bool, optional) – Extra normalization for integration.

Returns poly – Either 2j+1 Majorana polynomial coefficients or else one of the above functions.

Return type np.ndarray or func
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spheres.stars.pure.spin_sph

spheres.stars.pure.spin_sph(spin)
Takes a spin-j state and returns its decomposition into 2j “stars” given in spherical coordinates.

Parameters spin (qt.Qobj) – Spin-j state.

Returns sph – A array with shape (2j, 3) containing the 2j spherical coordinates of the stars.

Return type np.array

spheres.stars.pure.spin_spinors

spheres.stars.pure.spin_spinors(spin)
Takes a spin-j state and returns its decomposition into 2j spinors.

Parameters spin (qt.Qobj) – Spin-j state.

Returns spinors – 2j spinors.

Return type list

spheres.stars.pure.spin_xyz

spheres.stars.pure.spin_xyz(spin)
Takes a spin-j state and returns the cartesian coordinates on the unit sphere corresponding to its “Majorana stars.”
Each contributes a quantum of angular momentum 1

2 to the overall spin.

Note: If given a spin-0 state, returns [[0,0,0]]. If given a state with 0 norm, returns a list of 2j 0-vectors.

Parameters spin (qt.Qobj) – Spin-j state.

Returns xyz – A array with shape (2j, 3) containing the 2j cartesian coordinates of the stars.

Return type np.ndarray

spheres.stars.pure.spinors_spin

spheres.stars.pure.spinors_spin(spinors)
Given 2j spinors returns the corresponding spin-j state (up to phase).

Parameters spinors (list) – 2j spinors.

Returns spin – Spin-j state.

Return type qt.Qobj

spheres.stars.pure.xyz_spin

spheres.stars.pure.xyz_spin(xyz)
Given the cartesian coordinates of a set of “Majorana stars,” returns the corresponding spin-j state, which is
defined only up to complex phase.

Parameters xyz (np.ndarray) – A array with shape (2j, 3) containing the 2j cartesian coordi-
nates of the stars.

Returns spin – Spin-j state.

Return type qt.Qobj
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1.8.3 spheres.stars.star_utils

Useful Majorana star related functions.

Functions

antipodal(to_invert[, from_cartesian, . . . ]) If given an extended complex coordinate, takes the point
to its antipode on the sphere via the map:

basis(d, i[, up]) Similar to pauli_eigenstate, only parameterized by di-
mension.

pauli_eigenstate(j, m, direction) Returns eigenstates of Pauli operators.
poleflip(to_flip[, from_cartesian, . . . ]) Flips the pole of projection.
spherical_inner(a, b) ⟨𝑎 | 𝑏⟩ via an integral over the sphere.
spin_coherent(j, coord[, from_cartesian, . . . ]) Returns the spin-j coherent state which is defined by

having all its Majorana stars located at a single point
on the sphere.

spheres.stars.star_utils.antipodal

spheres.stars.star_utils.antipodal(to_invert, from_cartesian=False, from_spherical=False)
If given an extended complex coordinate, takes the point to its antipode on the sphere via the map:

𝑧 → − 𝑧

|𝑧|2
= − 1

𝑧*

If 𝑧 = ∞, 𝑧 → 0 and if 𝑧 = 0, 𝑧 → ∞.

If given a spin state or polynomial coefficients, inverts the whole sphere. This could be done by inverting the
individual roots, or directly on the state/polynomial by reversing the components, complex conjugating, and
multiplying every other component by −1.

If from_cartesian=True or from_spherical=True, the argument is interpreted as a single coordinate in terms of
those coordinate systems and the flipped coordinate is returned in the same.

Parameters to_invert (complex/inf or qt.Qobj or np.ndarray) – Extended
complex coordinate, cartesian coordinate, spherical coordinate, or spin state/polynomial to in-
vert.

Returns inverted – Inverted extended complex coordinate, cartesian coordinate, spherical coordi-
nate or spin state/polynomial.

Return type complex/inf or qt.Qobj or np.ndarray

spheres.stars.star_utils.basis

spheres.stars.star_utils.basis(d, i, up='z')
Similar to pauli_eigenstate, only parameterized by dimension.

Parameters

• d (int) – Dimension.

• i (int) – Basis state.

• up (str) – “x”, “y”, or “z”.
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spheres.stars.star_utils.pauli_eigenstate

spheres.stars.star_utils.pauli_eigenstate(j, m, direction)
Returns eigenstates of Pauli operators.

Parameters

• j (float) – j value of representation.

• m (float) – m value of representation.

• direction (str) – “x”, “y”, or “z”.

spheres.stars.star_utils.poleflip

spheres.stars.star_utils.poleflip(to_flip, from_cartesian=False, from_spherical=False)
Flips the pole of projection. If given an extended complex coordinate, this amounts to projecting to the sphere
via a South Pole projection and then projecting back to the plane via a North Pole projection.

More simply:

𝑧 → 𝑧

|𝑧|2
=

1

𝑧*

If 𝑧 = ∞, 𝑧 → 0 and if 𝑧 = 0, 𝑧 → ∞.

If given a spin state or polynomial coefficients, flips the pole of projection for the entire state. This could be done
by flipping the individual roots, or directly on the state/polynomial by reversing the components and complex
conjugating.

This is useful for evaluating the Majorana polynomial at ∞. We actually need a second coordinate chart. We
flip the projection pole and evaluate at 0 instead.

If from_cartesian=True or from_spherical=True, the argument is interpreted as a single coordinate in terms of
those coordinate systems and the flipped coordinate is returned in the same.

Parameters

• to_flip ((complex/inf) or qt.Qobj or np.ndarray) – Extended complex
coordinate, cartesian coordinate, spherical coordinate, or spin state/polynomial to flip.

• from_cartesian (bool, optional) – Whether to interpret argument as cartesian
coordinates.

• from_spherical (bool, optional) – Whether to interpret argument as spherical
coordinates.

Returns flipped – Flipped extended complex coordinate, cartesian coordinate, spherical coordinate
or spin state/polynomial.

Return type (complex/inf) or qt.Qobj or np.ndarray
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spheres.stars.star_utils.spherical_inner

spheres.stars.star_utils.spherical_inner(a, b)
⟨𝑎 | 𝑏⟩ via an integral over the sphere.

Parameters

• a (func) – Normalized Majorana function.

• b (func) – Normalized Majorana function

Returns inner_product

Return type complex

spheres.stars.star_utils.spin_coherent

spheres.stars.star_utils.spin_coherent(j, coord, from_cartesian=True,
from_spherical=False, from_complex=False,
from_spinor=False)

Returns the spin-j coherent state which is defined by having all its Majorana stars located at a single point on the
sphere. This point can be given in terms of cartesian, spherical, extended complex, and spinorial coordinates.

Parameters

• j (int) – j value which indexes the 𝑆𝑈(2) representation.

• coord (nd.array or qt.Qobj or complex/inf) – Coordinates specifying the
direction of the spin coherent state.

• from_cartesian (bool, optional) – Whether the provided coordinates are carte-
sian (default).

• from_spherical (bool, optional) – Whether the provided coordinates are spher-
ical.

• from_complex (bool, optional) – Whether the provided coordinates are extended
complex.

• from_spinor (bool, optional) – Whether the provided coordinates are spinorial.

Returns spin_coherent – Spin-j coherent state in the specified direction.

Return type qt.Qobj

1.9 spheres.symmetrization

Symmetrization related functions, particularly in the context of permutation symmetric multiqubit states.
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Functions

spin_sym(spin[, map]) Converts a spin-j state into a state of 2j symmetrized
qubits.

spin_sym_map(j) Constructs an isometric linear map from spin-j states to
permutation symmetric states of 2j spin- 12 ’s.

sym_spin(sym[, map]) Converts a state of 2j symmetrized qubits into a spin-j
state.

symmetrize(pieces) Given a list of quantum states, constructs their sym-
metrized tensor product.

symmetrized_basis(n[, d]) Constructs a symmetrized basis set for n systems in d
dimensions.

1.9.1 spheres.symmetrization.spin_sym

spheres.symmetrization.spin_sym(spin, map=None)
Converts a spin-j state into a state of 2j symmetrized qubits. Constructs the linear map if not provided.

Parameters spin (qt.Qobj) – Pure or mixed spin state.

Returns sym – Pure or mixed state of 2j symmetrized qubits.

Return type qt.Qobj

1.9.2 spheres.symmetrization.spin_sym_map

spheres.symmetrization.spin_sym_map(j)
Constructs an isometric linear map from spin-j states to permutation symmetric states of 2j spin-12 ’s.

Parameters j (int) – j value.

Returns S – Linear map from 2𝑗 + 1 dimensions to 22𝑗 dimensions.

Return type qt.Qobj

1.9.3 spheres.symmetrization.sym_spin

spheres.symmetrization.sym_spin(sym, map=None)
Converts a state of 2j symmetrized qubits into a spin-j state. Constructs the linear map if not provided.

Parameters sym (qt.Qobj) – Pure or mixed state of 2j symmetrized qubits.

Returns spin – Pure or mixed spin state.

Return type qt.Qobj
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1.9.4 spheres.symmetrization.symmetrize

spheres.symmetrization.symmetrize(pieces)
Given a list of quantum states, constructs their symmetrized tensor product. If given a multipartite quantum
state instead, we sum over all permutations on the subsystems.

Parameters pieces (list or qt.Qobj) – List of quantum states or a multipartite state.

Returns sym – Symmetrized tensor product.

Return type qt.Qobj

1.9.5 spheres.symmetrization.symmetrized_basis

spheres.symmetrization.symmetrized_basis(n, d=2)
Constructs a symmetrized basis set for n systems in d dimensions.

Parameters

• n (int) – The number of systems to symmetrize.

• d (int or list) – Either an integer representing the dimensionality of the individual
subsystems, in which case, we work in the computational basis; or else a list of basis states
for the individual systems.

Returns

sym_basis – sym_basis["labels"] is a list of labels for the symmetrized basis states.
Each element of the list is a tuple whose length is the dimensionality of the individual subsys-
tems, with an integer counting the number of subsystems in that basis state.

sym_basis["basis"] is a dictionary mapping labels to symmetrized basis states.

sym_basis["map"] is a linear transformation from the permutation symmetric subspace to
the full tensor product of the n systems.

The dimensionality of the symmetric subspace corresponds to the number of ways of distribut-
ing 𝑛 elements in 𝑑 boxes, where 𝑛 is the number of systems and 𝑑 is the dimensionality of
an individual subsytems. In other words, the dimensionality 𝑠 of the permutation symmetric
subspace is

(︀
𝑑+𝑛−1

𝑛

)︀
.

So sym_basis["map"] is a map from C𝑠 → C𝑑𝑛

.

Return type dict

1.10 spheres.symplectic

Functions for converting between Gaussian Hamiltonians, complex symplectic matrices, and real symplectic matrices.
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Functions

complex_real_symplectic(S, s) Converts a complex symplectic transformation into a
real symplectic transformation.

complex_real_symplectic2(S, s) Converts a complex symplectic matrix/vector to a real
symplectic matrix/vector.

gaussian_complex_symplectic(H, h[, expm,
theta])

Converts a Gaussian transformation (in the form of a
Hermitian matrix and a displacement vector) into a com-
plex symplectic transformation (in the form of a com-
plex symplectic matrix and displacement vector).

is_complex_symplectic(S) Test if an matrix is complex symplectic.
is_real_symplectic(R) Test if an matrix is real symplectic.
make_gaussian_operator(A[, B, h])

omega_c(n) 2𝑛× 2𝑛 complex symplectic form: Ω𝑐 =

(︂
𝐼𝑛 0
0 −𝐼𝑛

)︂
.

omega_r(n) 2𝑛× 2𝑛 real symplectic form: Ω𝑐 =

(︂
0 𝐼𝑛

−𝐼𝑛 0

)︂
.

operator_real_symplectic(O[, expm, theta]) Converts a first quantized operator into a real symplec-
tic matrix via: make_gaussian_operator(),
gaussian_complex_symplectic(),
𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑟𝑒𝑎𝑙𝑠𝑦𝑚𝑝𝑙𝑒𝑐𝑡𝑖𝑐.

random_gaussian_operator(n) Returns random Gaussian transformation in the form of
a Hermitian matrix and a displacement vector.

symplectic_xyz() Returns Pauli matrices expressed as real symplectic
transformations.

upgrade_single_mode_operator(O, i,
n_modes)

Upgrades a single mode real symplectic operator O to
act on the i’th of n modes (where the latter are repre-
sented in terms of their first and second moments.)

upgrade_two_mode_operator(O, i, j, n_modes) Upgrades a two mode real symplectic matrix to act on
subsystems i and j of n modes, (where the modes are
represented in terms of their first and second moments).

1.10.1 spheres.symplectic.complex_real_symplectic

spheres.symplectic.complex_real_symplectic(S, s)
Converts a complex symplectic transformation into a real symplectic transformation.

We can use a complex symplectic matrix to perform a Gaussian unitary transformation on a vector of creation
and annihilation operators. At the same time, there is an equivalent real symplectic matrix R and real displace-
ment vector r that implements the same transformation on a vector of position and momentum operators.

�⃗� → R�⃗� + r

We can easily convert between 𝜉, the vector of annihilation and creation operators, and �⃗� , the vector of positions
and momenta, via:

�⃗� = 𝐿𝜉

Where 𝐿 = 1√
2

(︂
𝐼𝑛 𝐼𝑛

−𝑖𝐼𝑛 𝑖𝐼𝑛

)︂
.
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This comes from the definition of position and momentum operators in terms of creation and annihilation oper-
ators, e.g.:

�̂� =
1√
2

(�̂�+ �̂�†)

𝑃 = − 𝑖√
2

(�̂�− �̂�†)

Therefore we can turn our complex symplectic transformation into a real symplectic transformation via:

R = 𝐿S𝐿†

r = 𝐿s

If we’ve represented a Gaussian state in terms of its first and second moments, then the real sympectic transfor-
mations act on them!

Parameters

• S (np.array) – Complex symplectic matrix.

• s (np.array) – Complex symplectic displacement vector.

Returns

• R (np.array) – Real symplectic matrix.

• r (np.array) – Real symplectic displacement vector.

1.10.2 spheres.symplectic.complex_real_symplectic2

spheres.symplectic.complex_real_symplectic2(S, s)
Converts a complex symplectic matrix/vector to a real symplectic matrix/vector. Alternative construction:

If we write S as
(︂
𝐸 𝐹
𝐹 * 𝐸*

)︂
, and s as

(︂
𝑠
𝑠*

)︂
then equivalently:

R =

(︂
ℜ(𝐸 + 𝐹 ) −ℑ(𝐸 − 𝐹 )
ℑ(𝐸 + 𝐹 ) ℜ(𝐸 − 𝐹 )

)︂
r =

√
2

(︂
ℜ(𝑠)
ℑ(𝑠)

)︂
Parameters

• S (np.array) – Complex symplectic matrix.

• s (np.array) – Complex symplectic displacement vector.

Returns

• R (np.array) – Real symplectic matrix.

• r (np.array) – Real symplectic displacement vector.
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1.10.3 spheres.symplectic.gaussian_complex_symplectic

spheres.symplectic.gaussian_complex_symplectic(H, h, expm=True, theta=2)
Converts a Gaussian transformation (in the form of a Hermitian matrix and a displacement vector) into a complex
symplectic transformation (in the form of a complex symplectic matrix and displacement vector).

Evolving all the creation and annihilation operators by a Gaussian unitary is equivalent to an affine transforma-
tion:

𝑒𝑖𝐻𝜉𝑒−𝑖𝐻 = S𝜉 + s

Where S is a complex symplectic matrix: S = 𝑒−𝑖Ω𝑐H and s = (S − 𝐼2𝑛)H−1h.

Here the complex symplectic form is Ω𝑐 =

(︂
𝐼𝑛 0
0 −𝐼𝑛

)︂
, and if H has no inverse, we take the pseudoinverse

instead to calculate h.

Parameters

• H (np.array) – Gaussian operator.

• h (np.array) – Gaussian displacement.

• expm (bool) – Whether to exponentiate.

• theta (float) – Exponentiation parameter.

Returns

• S (np.array) – Complex symplectic matrix.

• s (np.array) – Complex symplectic displacement vector.

1.10.4 spheres.symplectic.is_complex_symplectic

spheres.symplectic.is_complex_symplectic(S)
Test if an matrix is complex symplectic.

Parameters S (np.array) –

Returns is_symplectic

Return type bool

1.10.5 spheres.symplectic.is_real_symplectic

spheres.symplectic.is_real_symplectic(R)
Test if an matrix is real symplectic.

Parameters S (np.array) –

Returns is_symplectic

Return type bool
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1.10.6 spheres.symplectic.make_gaussian_operator

spheres.symplectic.make_gaussian_operator(A, B=None, h=None)

1.10.7 spheres.symplectic.omega_c

spheres.symplectic.omega_c(n)

2𝑛× 2𝑛 complex symplectic form: Ω𝑐 =

(︂
𝐼𝑛 0
0 −𝐼𝑛

)︂
.

Parameters n (int) – The dimension will be 2n.

Returns W – Complex symplectic form.

Return type np.array

1.10.8 spheres.symplectic.omega_r

spheres.symplectic.omega_r(n)

2𝑛× 2𝑛 real symplectic form: Ω𝑐 =

(︂
0 𝐼𝑛

−𝐼𝑛 0

)︂
.

Parameters n (int) – The dimension will be 2n.

Returns W – Real symplectic form.

Return type np.array

1.10.9 spheres.symplectic.operator_real_symplectic

spheres.symplectic.operator_real_symplectic(O, expm=True, theta=2)
Converts a first quantized operator into a real symplectic matrix via: make_gaussian_operator(),
gaussian_complex_symplectic(), 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑟𝑒𝑎𝑙𝑠𝑦𝑚𝑝𝑙𝑒𝑐𝑡𝑖𝑐.

Parameters

• O (qt.Qobj) – Operator

• expm (bool) – Whether to exponentiate.

• theta (float) – Parameter for exponentiation.

Returns

• R (np.array) – Real symplectic matrix.

• r (np.array) – Real symplectic displacement vector.
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1.10.10 spheres.symplectic.random_gaussian_operator

spheres.symplectic.random_gaussian_operator(n)
Returns random Gaussian transformation in the form of a Hermitian matrix and a displacement vector.

Parameters n (int) – The operator will be 2𝑛× 2𝑛 dimensions.

Returns

• H (np.array) – Gaussian operator.

• h (np.array) – Gaussian displacement.

1.10.11 spheres.symplectic.symplectic_xyz

spheres.symplectic.symplectic_xyz()
Returns Pauli matrices expressed as real symplectic transformations.

Returns XYZ – Associates “x”, “y”, “z” to the corresponding real symplectic matrices.

Return type dict

1.10.12 spheres.symplectic.upgrade_single_mode_operator

spheres.symplectic.upgrade_single_mode_operator(O, i, n_modes)
Upgrades a single mode real symplectic operator O to act on the i’th of n modes (where the latter are represented
in terms of their first and second moments.)

Parameters

• O (np.array) – Single mode operator.

• i (int) – Which mode to act on.

• n_modes (int) – Of how many modes.

Returns U – Upgraded operator.

Return type np.array

1.10.13 spheres.symplectic.upgrade_two_mode_operator

spheres.symplectic.upgrade_two_mode_operator(O, i, j, n_modes)
Upgrades a two mode real symplectic matrix to act on subsystems i and j of n modes, (where the modes are
represented in terms of their first and second moments).

Parameters

• O (np.array) – Two mode operator.

• i (int) – First mode to act on.

• j (int) – Second mode to act on.

• n_modes (int) – Of how many modes.

Returns U – Upgraded operator.

Return type np.array
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1.11 spheres.utils

Miscellaneous useful functions.

Functions

binomial(n, k) Binomial coefficient
(︀
𝑛
𝑘

)︀
= 𝑛!

𝑘!(𝑛−𝑘)!

bitstring_basis(bitstring[, dims]) Generates a basis vector corresponding to a given bit-
string, which may be a list of integers or a string of in-
tegers.

compare_nophase(a, b) Compares two vectors disregarding their overall com-
plex phase.

compare_spinors(A, B[, decimals]) Compares two lists of spinors, disregarding both their
phases, as well as their ordering in the list.

compare_unordered(A, B[, decimals]) Compares two sets of vectors regardless of their order-
ing up to some precision.

components(q) Extracts components of qt.Qobj, whether bra or ket, as
a numpy array.

density_to_purevec(density) Converts a density matrix to a pure vector if it’s rank-1.
dirac(state[, probabilities]) Prints a pretty representation of a state in Dirac braket

notation.
fix_stars(old_stars, new_stars) Try to adjust the ordering of a list of stars to keep con-

tinuity, so that they are in the “same order.” Not always
reliable.

flatten(to_flatten) Flattens list of lists.
from_pauli_basis(coeffs[, basis]) Given a dictionary mapping Pauli strings to com-

ponents, returns the corresponding density ma-
trix/operator.

measure(state, projectors) Given a state and a set of projectors, calculates the prob-
ability of each outcome, and returns an outcome index
with that probability.

normalize(v) Normalizes numpy vector.
normalize_phase(v) Normalizes the phase of a complex vector (np.ndarray

or qt.Qobj).
pauli_basis(n) Generates the Pauli basis for n qubits.
phase(v) Extracts phase of a complex vector (np.ndarray or

qt.Qobj) by finding the first non-zero component and re-
turning its phase.

phase_angle(q) Extracts phase angle of a complex vector (np.ndarray
or qt.Qobj) by finding the first non-zero component and
returning its phase angle.

polygon_area(phis, thetas[, radius]) Computes area of spherical polygon.
qubits_xyz(state) Returns XYZ expectation values for each qubit in a ten-

sor product.
rand_c([n]) Generates (n) random extended complex coordinate(s)

whose real and imaginary parts are normally distributed,
and ten percent of the time, we return ∞.

rand_sph([n]) Generates (n) random point(s) on the unit sphere in
spherical coordinates.

continues on next page
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Table 19 – continued from previous page
rand_xyz([n]) Generates (n) random point(s) on the unit sphere in

cartesian coordinates.
spinj_xyz(state) Returns XYZ expectation values for a spin-j state.
tensor_upgrade(O, i, n) Upgrades an operator to act on the i’th subspace of n

subsystems.
to_pauli_basis(qobj[, basis]) Expands a state/operator in the Pauli basis.

1.11.1 spheres.utils.binomial

spheres.utils.binomial(n, k)
Binomial coefficient

(︀
𝑛
𝑘

)︀
= 𝑛!

𝑘!(𝑛−𝑘)!

Parameters

• n (int) –

• k (int) –

Returns binomial_coefficient

Return type int

1.11.2 spheres.utils.bitstring_basis

spheres.utils.bitstring_basis(bitstring, dims=2)
Generates a basis vector corresponding to a given bitstring, which may be a list of integers or a string of inte-
gers. The dimensionality of each tensor factor is given by dims, which may be either an integer (all the same
dimensionality) or a list (a dimension for each factor).

Parameters

• bitstring (str) –

• dims (int or list) –

Returns tensor_state

Return type qt.Qobj

1.11.3 spheres.utils.compare_nophase

spheres.utils.compare_nophase(a, b)
Compares two vectors disregarding their overall complex phase.

Parameters

• a (qt.Qobj or np.array) –

• b (qt.Qobj or np.array) –

Returns equal

Return type bool
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1.11.4 spheres.utils.compare_spinors

spheres.utils.compare_spinors(A, B, decimals=5)
Compares two lists of spinors, disregarding both their phases, as well as their ordering in the list.

Parameters

• A (list) –

• B (list) –

• decimals (int) –

Returns equal

Return type bool

1.11.5 spheres.utils.compare_unordered

spheres.utils.compare_unordered(A, B, decimals=5)
Compares two sets of vectors regardless of their ordering up to some precision.

Parameters

• A (list) –

• B (list) –

• decimals (int) –

Returns equal

Return type bool

1.11.6 spheres.utils.components

spheres.utils.components(q)
Extracts components of qt.Qobj, whether bra or ket, as a numpy array.

Parameters q (qt.Qobj) – Qutip state.

Returns n – Numpy array.

Return type np.array

1.11.7 spheres.utils.density_to_purevec

spheres.utils.density_to_purevec(density)
Converts a density matrix to a pure vector if it’s rank-1.

Parameters density (qt.Qobj) –

Returns pure_state

Return type qt.Qobj
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1.11.8 spheres.utils.dirac

spheres.utils.dirac(state, probabilities=False)
Prints a pretty representation of a state in Dirac braket notation.

Parameters

• state (qt.Qobj) –

• probabilities (bool) – If True, returns only the probabilities.

1.11.9 spheres.utils.fix_stars

spheres.utils.fix_stars(old_stars, new_stars)
Try to adjust the ordering of a list of stars to keep continuity, so that they are in the “same order.” Not always
reliable.

Parameters

• old_stars (list) – List of xyz coordinates.

• new_stars (list) – List of xyz coordinates.

Returns fixed_stars – List of xyz coordinates.

Return type list

1.11.10 spheres.utils.flatten

spheres.utils.flatten(to_flatten)
Flattens list of lists.

Parameters to_flatten (list) – List of lists.

Returns flattened – Flattened list.

Return type list

1.11.11 spheres.utils.from_pauli_basis

spheres.utils.from_pauli_basis(coeffs, basis=None)
Given a dictionary mapping Pauli strings to components, returns the corresponding density matrix/operator.

Parameters exps (dict) –

Returns operator

Return type qt.Qobj
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1.11.12 spheres.utils.measure

spheres.utils.measure(state, projectors)
Given a state and a set of projectors, calculates the probability of each outcome, and returns an outcome index
with that probability.

Parameters

• state (qt.Qobj) –

• projectors (list) –

Returns index

Return type int

1.11.13 spheres.utils.normalize

spheres.utils.normalize(v)
Normalizes numpy vector. Simply passes the vector through if norm is 0.

Parameters v (np.array) – Numpy vector.

Returns v – Normalized numpy vector.

Return type np.array

1.11.14 spheres.utils.normalize_phase

spheres.utils.normalize_phase(v)
Normalizes the phase of a complex vector (np.ndarray or qt.Qobj).

Parameters v (np.array or qt.Qobj) –

Returns v – Phase normalized state.

Return type np.array or qt.Qobj

1.11.15 spheres.utils.pauli_basis

spheres.utils.pauli_basis(n)
Generates the Pauli basis for n qubits. Returns a dictionary associating a Pauli string (e.g., “IXY”) to the tensor
product of the corresponding Pauli operators.

Parameters n (int) – n qubits.

Returns basis

Return type dict
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1.11.16 spheres.utils.phase

spheres.utils.phase(v)
Extracts phase of a complex vector (np.ndarray or qt.Qobj) by finding the first non-zero component and returning
its phase.

Parameters v (np.array or qt.Qobj) –

Returns phase

Return type complex

1.11.17 spheres.utils.phase_angle

spheres.utils.phase_angle(q)
Extracts phase angle of a complex vector (np.ndarray or qt.Qobj) by finding the first non-zero component and
returning its phase angle.

Parameters v (np.array or qt.Qobj) –

Returns phase_angle

Return type float

1.11.18 spheres.utils.polygon_area

spheres.utils.polygon_area(phis, thetas, radius=1)
Computes area of spherical polygon. Returns result in ratio of the sphere’s area if the radius is specified.
Otherwise, in the units of provided radius.

Thanks to https://stackoverflow.com/questions/4681737/how-to-calculate-the-area-of-a-polygon-on-the-earths-surface-using-python

Parameters

• phis (list) –

• thetas (list) –

• radius (float) –

Returns area

Return type float

1.11.19 spheres.utils.qubits_xyz

spheres.utils.qubits_xyz(state)
Returns XYZ expectation values for each qubit in a tensor product.

Parameters state (qt.Qobj) – Tensor state of qubits.

Returns xyz – Array of xyz coordinates.

Return type np.array

1.11. spheres.utils 51

https://stackoverflow.com/questions/4681737/how-to-calculate-the-area-of-a-polygon-on-the-earths-surface-using-python


spheres, Release 0.3.0.9

1.11.20 spheres.utils.rand_c

spheres.utils.rand_c(n=1)
Generates (n) random extended complex coordinate(s) whose real and imaginary parts are normally distributed,
and ten percent of the time, we return ∞.

Parameters n (int) – Number of coordinates.

Returns c – n extended complex coordinates.

Return type complex/inf or np.array

1.11.21 spheres.utils.rand_sph

spheres.utils.rand_sph(n=1)
Generates (n) random point(s) on the unit sphere in spherical coordinates.

Parameters n (int) – Number of coordinates.

Returns xyz – n spherical coordinates.

Return type np.array

1.11.22 spheres.utils.rand_xyz

spheres.utils.rand_xyz(n=1)
Generates (n) random point(s) on the unit sphere in cartesian coordinates.

Parameters n (int) – Number of coordinates.

Returns xyz – n cartesian coordinates.

Return type np.array

1.11.23 spheres.utils.spinj_xyz

spheres.utils.spinj_xyz(state)
Returns XYZ expectation values for a spin-j state.

Parameters state (qt.Qobj) – Spin-j state.

Returns xyz – XYZ expectation values.

Return type np.array

1.11.24 spheres.utils.tensor_upgrade

spheres.utils.tensor_upgrade(O, i, n)
Upgrades an operator to act on the i’th subspace of n subsystems.

Parameters

• O (qt.Qobj) – Operator.

• i (int) – Which subsytem to act on.

• n (int) – Of how many.

Returns upgraded
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Return type qt.Qobj

1.11.25 spheres.utils.to_pauli_basis

spheres.utils.to_pauli_basis(qobj, basis=None)
Expands a state/operator in the Pauli basis. Returns a dictionary associating a Pauli string to the corresponding
component.

Parameters qobj (qt.Qobj) – State/operator

Returns coeffs

Return type dict

1.12 spheres.visualization

Tools for visualizing spin states with vpython and matplotlib.

Modules

spheres.visualization.majorana_sphere
spheres.visualization.
matplotlib_spheres
spheres.visualization.operator_sphere
spheres.visualization.
schwinger_spheres
spheres.visualization.vp_object

1.12.1 spheres.visualization.majorana_sphere

Functions

tangent_plane_rotation(theta, phi) Constructs rotation into the tangent plane to the sphere
at the given point specified in spherical coordinates.

spheres.visualization.majorana_sphere.tangent_plane_rotation

spheres.visualization.majorana_sphere.tangent_plane_rotation(theta, phi)
Constructs rotation into the tangent plane to the sphere at the given point specified in spherical coordinates.

Parameters

• theta (float) –

• phi (float) –

Returns

• T (np.array)

• A 3x3 matrix representing the linear transformation corresponding to the rotation.

1.12. spheres.visualization 53



spheres, Release 0.3.0.9

Classes

MajoranaSphere(spin[, scene, pos, radius, . . . ]) MajoranaSphere provides a nice way to visualize (pure)
spin-j states using vpython for graphics, whether in a
jupyter notebook or in a standalone environment.

SphericalWavefunction(spin[, pos, radius, . . . ]) Container for a 3D representation of a spin coherent
wavefunction.

spheres.visualization.majorana_sphere.MajoranaSphere

class spheres.visualization.majorana_sphere.MajoranaSphere(spin, scene=None,
pos=<0, 0, 0>,
radius=None,
sphere_color=<0,
0, 1>,
sphere_opacity=0.3,
sphere_draggable=True,
star_colors=None,
make_trails=False,
show_rotation_axis=True,
show_phase=False,
show_reference_axes=False,
show_norm=False,
show_wavefunction=False,
wavefunc-
tion_type='coherent',
wavefunc-
tion_samples=15)

Bases: spheres.visualization.vp_object.VObject

MajoranaSphere provides a nice way to visualize (pure) spin-j states using vpython for graphics, whether in a
jupyter notebook or in a standalone environment.

spin
The spin-j state represented. If this attribute is set, the visualization is automatically updated.

Type qt.Qobj

j
Its j value.

Type float

xyz
Majorana points in cartesian coordinates.

Type np.ndarray

phase
Complex phase of the spin state.

Type complex

scene
Scene in which to place the Majorana sphere. Defaults to a global scene.

Type vp.canvas
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show_rotation_axis
Whether to show the expected rotation axis. If this attribute is set, the visualization is automatically
updated.

Type bool

show_phase
Whether to show the phase. If this attribute is set, the visualization is automatically updated.

Type bool

show_reference_axes
Whether to show reference cartesian axes. If this attribute is set, the visualization is automatically updated.

Type bool

show_norm
Whether to show the norm of the state as a label. If this attribute is set, the visualization is automatically
updated.

Type bool

sphere_draggable
Whether one can drag the sphere with the mouse. If this attribute is set, the visualization is automatically
updated.

Type bool

make_trails
Whether the stars leave trails. If this attribute is set, the visualization is automatically updated.

Type bool

show_wavefunction
Whether to show spin coherent wavefunction. If this attribute is set, the visualization is automatically
updated.

Type bool

wavefunction_type
“majorana” or “coherent”. The former evaluates the amplitude on a spin coherent state at sample points
on the sphere. The latter evaluates the normalized Majorana function. The two should be antipodal to each
other.If this attribute is set, the visualization is automatically updated.

Type str

wavefunction_samples
Number of sample points.

Type int

__init__(spin, scene=None, pos=<0, 0, 0>, radius=None, sphere_color=<0, 0, 1>,
sphere_opacity=0.3, sphere_draggable=True, star_colors=None, make_trails=False,
show_rotation_axis=True, show_phase=False, show_reference_axes=False,
show_norm=False, show_wavefunction=False, wavefunction_type='coherent', wave-
function_samples=15)

Initialize self. See help(type(self)) for accurate signature.
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Methods

__init__(spin[, scene, pos, radius, . . . ]) Initialize self.
add_toggle(name, create)
change_wavefunction_type()
clear_snapshot() Clears the last snapshot taken.
clear_trails() Clear star trails.
create_norm()
create_phase()
create_reference_axes()
create_rotation_axis()
create_wavefunction()
destroy() Destroys the Majorana sphere.
destroy_vchildren(vchildren)
evolve(H[, dt, T]) Evolves the state, updating the visual in real time.
mousedown()
mousemove()
mouseup()
refresh()
refresh_norm()
refresh_phase()
refresh_reference_axes()
refresh_rotation_axis()
refresh_spin()
refresh_stars()
refresh_trails()
refresh_wavefunction()
snapshot() Takes a snaphot of the stars, phase, and rotation axis.
sphere_drag()
start_sphere_dragging()
stop_sphere_dragging()
toggle(name[, value])

clear_snapshot()
Clears the last snapshot taken.

clear_trails()
Clear star trails.

destroy()
Destroys the Majorana sphere.

evolve(H, dt=0.05, T=6.283185307179586)
Evolves the state, updating the visual in real time.

Parameters

• H (qt.Qobj) – Hamiltonian.

• dt (float) – Time step.

• T (float) – Time interval.

snapshot()
Takes a snaphot of the stars, phase, and rotation axis. In other words, makes a copy of them.
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spheres.visualization.majorana_sphere.SphericalWavefunction

class spheres.visualization.majorana_sphere.SphericalWavefunction(spin,
pos=<0,
0, 0>,
radius=1,
wavefunc-
tion_type='coherent',
wavefunc-
tion_samples=15)

Bases: object

Container for a 3D representation of a spin coherent wavefunction.

__init__(spin, pos=<0, 0, 0>, radius=1, wavefunction_type='coherent', wavefunction_samples=15)

Parameters

• spin (qt.Qobj) – Spin-j state.

• pos (vp.vector) – Position.

• radius (float) – Radius.

• wavefunction_type (str) – “coherent” or “majorana”. The former evaluates the
amplitude on a spin coherent state at sample points on the sphere. The latter evaluates the
normalized Majorana function. The two should be antipodal to each other.

• wavefunction_samples (int) – Number of sample points.

Methods

__init__(spin[, pos, radius, . . . ])
param spin Spin-j state.

create_wavefunction()
refresh_wavefunction([update_position,
. . . ])

1.12.2 spheres.visualization.matplotlib_spheres

Functions

animate_spin(spin, H[, dt, T, show_arrows, . . . ]) Visualizes the evolution of a spin-j state with matplotlib.
viz_spin(spin[, show_arrows, show]) Visualizes a spin-j state with matplotlib.
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spheres.visualization.matplotlib_spheres.animate_spin

spheres.visualization.matplotlib_spheres.animate_spin(spin, H, dt=0.1, T=100,
show_arrows=True,
show=True,
html_animation=False,
filename=None, fps=20)

Visualizes the evolution of a spin-j state with matplotlib.

%matplotlib notebook
animate_spin(qt.rand_ket(3), qt.rand_herm(3))

Parameters

• spin (qt.Qobj) – Spin-j state.

• H (qt.Qobj) – Hamiltonian.

• dt (float) – Time step.

• T (float) – Time interval.

• show_arrows (bool) – If True, also shows vectors pointing to the stars.

• show (bool) – Whether to automatically display the figure.

• html_animation (bool) – Whether to return an HTML video.

• filename (str) – Where to save the resulting animation.

• fps (int) – Frames per second.

Returns

Return type matplotlib.animation.FuncAnimation or IPython.core.display.HTML

spheres.visualization.matplotlib_spheres.viz_spin

spheres.visualization.matplotlib_spheres.viz_spin(spin, show_arrows=True,
show=True)

Visualizes a spin-j state with matplotlib.

Parameters

• spin (qt.Qobj) –

• show_arrows (bool) – If True, also shows vectors pointing to the stars.

• show (bool) – Whether to automatically display the figure.

1.12.3 spheres.visualization.operator_sphere

Classes

OperatorSphere(dm[, scene, pos]) Visualization for density matrices and operators.
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spheres.visualization.operator_sphere.OperatorSphere

class spheres.visualization.operator_sphere.OperatorSphere(dm, scene=None,
pos=<0, 0, 0>)

Bases: object

Visualization for density matrices and operators. Using the spherical tensor decomposition, the operator or den-
sity matrix is represented by a series of concentric spheres with their own constellations. The operator/density
matrix is represented by a list of integer valued spin states. The norms of these states become the radii of the
spheres, and the phases of the states become the colors. The spin-0 sector is represented by the label at the
bottom. For hermitian matrices, the constellations all have antipodal symmetry. The lower spin states can be
interpreted as the partial states in the permutation symmetric qubit representation.

__init__(dm, scene=None, pos=<0, 0, 0>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(dm[, scene, pos]) Initialize self.
destroy() Destroys the Operator sphere.
evolve(H[, dt, T]) Evolves the mixed state/operator, updating the visual

in real time.
mousedown()
mousemove()
mouseup()
refresh()

destroy()
Destroys the Operator sphere.

evolve(H, dt=0.05, T=6.283185307179586)
Evolves the mixed state/operator, updating the visual in real time.

Parameters

• H (qt.Qobj) – Hamiltonian.

• dt (float) – Time step.

• T (float) – Time interval.

1.12.4 spheres.visualization.schwinger_spheres

Classes

OscillatorPlane(state, pos) Container for a 3D representation of a 2D oscillator state
in the plane.

SchwingerSpheres([state, scene, pos,
show_plane])

Visualization for two oscillators as a tower of spin-j
states.
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spheres.visualization.schwinger_spheres.OscillatorPlane

class spheres.visualization.schwinger_spheres.OscillatorPlane(state, pos)
Bases: object

Container for a 3D representation of a 2D oscillator state in the plane. Amplitudes at discretized positions are
represented by arrows, and the expected position is a yellow sphere.

__init__(state, pos)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(state, pos) Initialize self.
destroy()
refresh(state)

spheres.visualization.schwinger_spheres.SchwingerSpheres

class spheres.visualization.schwinger_spheres.SchwingerSpheres(state=None,
scene=None,
pos=<0, 0, 0>,
show_plane=False)

Bases: object

Visualization for two oscillators as a tower of spin-j states. If show_plane=True, displays a representation of the
2D oscillator position states.

__init__(state=None, scene=None, pos=<0, 0, 0>, show_plane=False)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([state, scene, pos, show_plane]) Initialize self.
destroy() Destroys the Schwinger spheres.
evolve([H, dt, T]) Evolves the state, updating the visual in real time.
lower_spin(spin) Lowers a spin-j state.
measure(direction) Applies a projective measurement (with random out-

comes).
raise_spin(spin[, replace]) Raises a spin-j state.
random() Load in a random state.
random_hamiltonian()

returns H – Random Hamiltonian of the
right dimensions.

refresh()
vacuum() Load in the vacuum state.

destroy()
Destroys the Schwinger spheres.

evolve(H=None, dt=0.05, T=6.283185307179586)
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Evolves the state, updating the visual in real time.

Parameters

• H (qt.Qobj) – Hamiltonian. If provided with a first quantized Hamiltonian, automati-
cally second quantizes.

• dt (float) – Time step.

• T (float) – Time interval.

lower_spin(spin)
Lowers a spin-j state.

Parameters spin (qt.Qobj) –

measure(direction)
Applies a projective measurement (with random outcomes).

Parameters direction (str) – “x”, “y”, “z”, or “q” (2D position).

raise_spin(spin, replace=False)
Raises a spin-j state.

Parameters

• spin (qt.Qobj) –

• replace (bool) – If True, raises the spin state from the vacuum.

random()
Load in a random state.

random_hamiltonian()

Returns H – Random Hamiltonian of the right dimensions.

Return type qt.Qobj

vacuum()
Load in the vacuum state.

1.12.5 spheres.visualization.vp_object

Classes

VObject([scene]) Parent class for visual objects (using vpython), stream-
lining the automatic updating of visuals when attributes
are changed, mouse interaction, and keeping track of
sets of visual objects which might be toggled on or off.
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spheres.visualization.vp_object.VObject

class spheres.visualization.vp_object.VObject(scene=None)
Bases: object

Parent class for visual objects (using vpython), streamlining the automatic updating of visuals when attributes
are changed, mouse interaction, and keeping track of sets of visual objects which might be toggled on or off.

__init__(scene=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([scene]) Initialize self.
add_toggle(name, create)
destroy()
destroy_vchildren(vchildren)
mousedown()
mousemove()
mouseup()
refresh()
toggle(name[, value])

62 Chapter 1. spheres



CHAPTER

TWO

SPHERES

toolbox for higher spin and symmetrization

spheres provides tools for dealing with higher spin systems and for symmetrized quantum circuits. Among other
things, we provide implementations of:

1. The “Majorana stars” representation of a spin-j state as a degree-2j complex polynomial defined on the extended
complex plane (the Riemann sphere). The eponymous stars are the 2j roots of this polynomial and each can
be interpreted as a quantum of angular momentum contributing 1/2 in the specified direction. This polynomial
can be defined in terms of the components of a |j, m> vector or in terms of a spin coherent wavefunction
<-xyz|psi>, where |psi> is the spin state and <-xyz| is the adjoint of a spin coherent state at the point
antipodal to xyz.

2. The “symmetrized spinors” representation of a spin-j state as 2j symmetrized spin-1/2 states (aka qubits). In-
deed, the basis states of 2j symmetrized qubits are in 1-to-1 relation to the |j, m> basis states of a spin-j.
Such a representation is naturally useful for simulating spin-j states on a qubit based quantum computer, and we
provide circuits for preparing such states.
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3. The “Schwinger oscillator” representation of a spin-j state as the total energy 2j subspace of two quantum
harmonic oscillators. Indeed, the full space of the two oscillators furnishes a representation of spin with a
variable j value: a superposition of j values. This construction can be interpreted as the “second quantization”
of qubit, and is appropriate for implementation of photonic quantum computers.

Everything is accompanied by 3D visualizations thanks to vpython (and matplotlib) and interfaces to popular quantum
computing libraries from qutip to StrawberryFields.

Finally, we provide tools for implementing a form of quantum error correction or “stablization” by harnessing the
power of symmetrization. We provide automatic generation of circuits which perform a given quantum experiment
multiple times in parallel while periodically projecting them all jointly into the symmetric subspace, which in principle
increases the reliability of the computation under noisy conditions.

spheres is a work in progress! Beware!

Get started:

from spheres import *
vsphere = MajoranaSphere(qt.rand_ket(3))
vsphere.evolve(qt.rand_herm(3))

Check out the documentation.

For more information and reference material, including jupyter notebooks, visit heyredhat.github.io.

Special thanks to the Quantum Open Source Foundation.

2.1 An Introduction to Majorana’s “Stellar” Representation of Spin

2.1.1 A “star”

We’re all familiar with the qubit.

It’s just about the simplest quantum system that there is.
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To get started, let’s choose some basis states. If we quantize along the 𝑍 axis, we can write the state of a qubit as a

complex linear superposition of basis states |↑⟩ =

(︂
1
0

)︂
and |↓⟩ =

(︂
0
1

)︂
:

| 𝜓⟩ = 𝛼 |↑⟩ + 𝛽 |↓⟩ =

(︂
𝛼
𝛽

)︂
where |𝛼|2 + |𝛽|2 = 1.

There are many qubits in nature: in fact, any two dimensional quantum system can be used as a qubit. But the original
point of a qubit was to represent the intrinsic angular momentum, or spin, of a spin- 12 particle. Indeed, a qubit is an
irriducible representation of 𝑆𝑈(2), which is the double cover of the 3D rotation group 𝑆𝑂(3).

If we consider the expectation values (⟨𝜓 | �̂� | 𝜓⟩, ⟨𝜓 | 𝑌 | 𝜓⟩, ⟨𝜓 | 𝑍 | 𝜓⟩), with the Pauli matrices:

�̂� =

(︂
0 1
1 0

)︂
, 𝑌 =

(︂
0 −𝑖
𝑖 0

)︂
, 𝑍 =

(︂
1 0
0 −1

)︂
we can associate the qubit uniquely with a point on the unit sphere, which picks out its “average rotation axis.” It turns
out that this point uniquely determines the state (up to complex phase).

[17]: from spheres import *

qubit = qt.rand_ket(2)
print(qubit)
print("xyz: %s" % ([qt.expect(qt.sigmax(), qubit),\

qt.expect(qt.sigmay(), qubit),\
qt.expect(qt.sigmaz(), qubit)]))

Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[-0.50212694+0.50076549j]
[ 0.54008752-0.45321952j]]

xyz: [-0.9962983741962657, -0.08576693188845602, 0.005795081390174539]

We can visualize it with matplotlib:

[18]: %matplotlib notebook
fig = viz_spin(qubit)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Or with vpython (in a notebook or in the console, the latter being better for interactive visuals):

[ ]: scene = vp.canvas(background=vp.color.white)
m = MajoranaSphere(qubit, scene=scene)

Now one way of seeing that the state is uniquely determined by this point (up to complex phase) is to consider a
perhaps less familiar construction:

Given a qubit | 𝜓⟩ =

(︂
𝛼
𝛽

)︂
, form the complex ratio 𝛽

𝛼 . If 𝛼 = 0, then this will go to ∞, which is fine, as we’ll see!

So we have some 𝑐 = 𝛽
𝛼 . Suppose 𝑐 ̸= ∞. Then this is just a point on the complex plane: 𝑐 = 𝑥 + 𝑖𝑦. Now imagine

there’s a unit sphere at the origin cut at the equator by the complex plane. And imagine you’re standing at the South
Pole, and you have a laser pointer, and you point the beam at 𝑐.

The beam will intersect the sphere in exactly one location. If 𝑐 is outside the unit circle on the plane, you’ll get a point
on the southern hemisphere, and if 𝑐 is inside the unit circle, you’ll get a point on the northern hemisphere. Every
point in the plane, in this way, can be mapped to a point on the sphere–except we have a point left over, the South Pole
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itself! So if 𝛼 = 0, and therefore 𝑐 = ∞, we map that point to the South Pole. In other words, we can think of 𝑧 = 𝛽
𝛼

as being a point on the extended complex plane (the plane plus an extra point at infinity), which is just the sphere. This
map is known as the stereographic projection.

Explicitly, if 𝑐 = 𝑥+ 𝑖𝑦, then we have ( 2𝑥
1+𝑥2+𝑦2 ,

2𝑦
1+𝑥2+𝑦2 ,

1−𝑥2−𝑦2

1+𝑥2+𝑦2 ) or (0, 0,−1) if 𝑧 = ∞.

Below, the map is depicted (where the pole of projection is the North Pole):

Moreover, we can go in reverse: 𝑐 = 𝑥
1+𝑧 + 𝑖 𝑦

1+𝑧 or ∞ if 𝑧 = −1.

[19]: c = spinor_c(qubit) # gives us our complex ratio
print("c: %s" % c)

xyz = c_xyz(c) # stereographically projects to the sphere
print("xyz: %s" % xyz)

c: (-0.9905580099071644-0.08527276925028497j)
xyz: [-0.99629837 -0.08576693 0.00579508]

As you can see, we get the same point which we obtained before via the expectation values (⟨�̂�⟩, ⟨𝑌 ⟩, ⟨𝑍⟩). Moreover,
it’s clear that every state will give us a unique point on the sphere, and vice versa, up to complex phase. And the bit
about the phase is true because clearly if we rephase both 𝛼 and 𝛽 by the same amount in 𝑐 = 𝛽

𝛼 , we’ll end up with the
same 𝑐. And we’re only allowed to rephase, and not rescale, because of the normalization condition |𝛼|2 + |𝛽|2 = 1.

And by the way, the phase matters: watch what happens to the phase (depicted in green), as we do a full rotation:

[ ]: scene = vp.canvas(background=vp.color.white)
m = MajoranaSphere(qubit, show_phase=True, scene=scene)
m.snapshot()
m.evolve(qt.jmat(1/2, 'y'), T=2*np.pi)

The phase goes to the negative of itself. Only after a full two turns does the state come back to itself completely, and
this is what characterizes spin- 12 representations. 𝑆𝑈(2) is the double cover of 𝑆𝑂(3) and what this means is that for
every element in the usual rotation group, there are two elements of 𝑆𝑈(2).

[ ]: scene = vp.canvas(background=vp.color.white)
m = MajoranaSphere(qubit, show_phase=True, scene=scene)
m.snapshot()
m.evolve(qt.jmat(1/2, 'y'), T=4*np.pi)

In any case, by means of the stereographic projection, we obtain the “Riemann sphere” (here depicted with the North
Pole being the pole of projection:
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We’ve just seen how each these cardinal directions can be associated with qubit states: in fact, the eigenstates of the
Pauli matrices. And thus we observe the interesting fact that antipodal points on the sphere become orthogonal vectors
in Hilbert space.

[20]: print([spinor_c(v) for v in qt.sigmax().eigenstates()[1]])
print([spinor_c(v) for v in qt.sigmay().eigenstates()[1]])
print([spinor_c(v) for v in qt.sigmaz().eigenstates()[1]])

[(-1+0j), (1.0000000000000002+0j)]
[-1j, (-0+1.0000000000000002j)]
[inf, 0j]

spheres.coordinates provides useful functions for going back and forth between coordinate systems on the
sphere. E.g.:

[21]: print(xyz_c(xyz)) # back to extended complex coordinates
print(xyz_sph(xyz)) # spherical coordinates
print(c_sph(c)) # spherical coordinates, etc
print(c_spinor(c)) # back to a qubit, up to phase
print(compare_nophase(qubit, c_spinor(c)))

(-0.9905580099071642-0.08527276925028496j)
[1.56500121 3.22746653]
[1.56500121 3.22746653]
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[ 0.70915269+0.j ]
[-0.70245688-0.06047141j]]

True
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2.1.2 A “constellation”

So we can represent a spin- 12 state by a point on the “Bloch sphere” plus a complex phase, which gives us an intuitive
geometrical picture of the quantum state, one which isn’t immediately obvious when you look at it represented as a
complex linear superpositon, say, of 𝑍 eigenstates.

But what about higher spin states? Recall that spin representations are labeled by 𝑗 values, which count up from 0 by
half integers, and their dimensionality is 2𝑗 + 1. Each basis state is associated with an 𝑚 value ranging from −𝑗 to 𝑗,
counting up by 1. So basis states can be labeled | 𝑗,𝑚⟩. E.g.:

For spin-0: | 0, 0⟩.

For spin- 12 : | 1
2 ,

1
2 ⟩, |

1
2 ,−

1
2 ⟩.

For spin-1: | 1, 1⟩, | 1, 0⟩, | 1,−1⟩.

For spin- 32 : | 3
2 ,

3
2 ⟩, |

3
2 ,

1
2 ⟩, |

3
2 ,−

1
2 ⟩, |

3
2 ,−

3
2 ⟩.

And so on.

One might wonder if our simple geometrical representation for a qubit generalizes for higher spin. And the answer
is yes! In fact, it was first proposed way back in 1932 by Ettore Majorana. The answer is both simple and elegant:
a spin-𝑗 state can be represented by a constellation of 2𝑗 points on the sphere (up to phase). These points are often
poetically termed “stars” in the literature.

So just as a spin- 12 can be specified by a point on a sphere, a spin-1 state can be specified by two points on the sphere,
a spin- 32 state by three points on the sphere, and so on (again, up to phase).

The basic construction is this.

Given a spin-𝑗 state in the | 𝑗,𝑚⟩ representation, | 𝜓⟩ =

⎛⎜⎜⎜⎜⎜⎝
𝑎0
𝑎1
𝑎2
𝑎3
...

⎞⎟⎟⎟⎟⎟⎠, form a complex polynomial in an unknown 𝑧:

𝑝(𝑧) =

𝑚=𝑗∑︁
𝑚=−𝑗

(−1)𝑗+𝑚

√︃(︂
2𝑗

𝑗 −𝑚

)︂
𝑎𝑗+𝑚𝑧

𝑗−𝑚
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The roots of this polynomial, called the Majorana polynomial, when stereographically projected from the complex
plane to the sphere, yield the constellation. If you lose a degree, (i.e. if the coefficients for the highest powers of 𝑧
are 0) then you add a root “at infinity” for each one, and so the spin-𝑗 state can always be specified by 2𝑗 point on the
sphere.

In other words, by the fundamental theorem of algebra, no less, a spin-𝑗 state factorizes into 2𝑗 pieces.

As the above image indicates, the | 𝑗,𝑚⟩ basis states (assuming we’ve quantized along the 𝑍 direction) consist of (in
the case of spin-32 ) three stars at the North Pole, none at the South Pole; two stars at the North Pole, one at the South
Pole; one at the North Pole, two at the South Pole; none at the North Pole, three at the South Pole. Any spin state can
be expressed as a complex linear superposition of these basis states/constellations.

At the same time, thanks to Majorana, we can also interpret the spin state as a polynomial and find its roots. Each
corresponds to a little monomial whose product (as opposed to sum) determines the same state. Each root is associated
with a direction in 3D, and under rotations, the stars transform rigidly as a whole constellation.

[22]: from spheres import *
spin = xyz_spin([[1,0,0], [0,1,0],[0,0,1]])
print("cartesian stars:\n%s" % spin_xyz(spin))
print("spherical stars:\n%s" % spin_sph(spin))
print("extended complex stars:\n%s" % "\n".join([str(c) for c in spin_c(spin)]))

cartesian stars:
[[2.22044605e-16 1.00000000e+00 2.22044605e-16]
[1.00000000e+00 8.32667268e-17 2.22044605e-16]
[0.00000000e+00 0.00000000e+00 1.00000000e+00]]

spherical stars:
[[1.57079633e+00 1.57079633e+00]
[1.57079633e+00 8.32667268e-17]
[0.00000000e+00 0.00000000e+00]]

extended complex stars:
(2.220446049250313e-16+0.9999999999999998j)
(0.9999999999999998+8.326672684688674e-17j)
0j

[ ]: scene = vp.canvas(background=vp.color.white)
m = MajoranaSphere(spin, scene=scene)
m.evolve(qt.jmat(3/2, 'y'), dt=0.01, T=5)

2.1. An Introduction to Majorana’s “Stellar” Representation of Spin 69



spheres, Release 0.3.0.9

We can use matplotlib for this too:

[23]: %matplotlib notebook
anim = animate_spin(spin, qt.jmat(3/2, 'y'))

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

We can understand the Majorana polynomial a little better by considering Vieta’s formulas which relate the roots to
the coefficients of a polynomial.

Given a polynomial 𝑓(𝑧) = 𝑐𝑛𝑧
𝑛 + 𝑐𝑛−1𝑧

𝑛−1 + · · · + 𝑐1𝑧 + 𝑐0, if we denote its roots by 𝑟𝑖, we can write:

𝑐𝑛 = 𝑐𝑛

𝑐𝑛−1 = −𝑐𝑛
[︀
𝑟1 + 𝑟2 + . . .

]︀
𝑐𝑛−2 = 𝑐𝑛

[︀
𝑟1𝑟2 + 𝑟1𝑟3 + 𝑟2𝑟3 + . . .

]︀
𝑐𝑛−3 = −𝑐𝑛

[︀
𝑟1𝑟2𝑟3 + 𝑟1𝑟2𝑟4 + 𝑟2𝑟3𝑟4 + . . .

]︀
...

𝑐0 = (−1)𝑛𝑐𝑛
[︀
𝑟1𝑟2 . . . 𝑟𝑛

]︀
In other words, if we divide out by the leading coefficient 𝑐𝑛, which doesn’t affect the roots, the 𝑐0 coefficient is given
(−1)𝑛 times the product of the roots, the 𝑐1 coefficient is given by (−1)𝑛−1 times the sum of the products of pairs
of roots, the 𝑐2 coefficient is given by (−1)𝑛−2 times the sum of products of triples of roots, and so forth. In each of
these expressions, there will be

(︀
𝑛

𝑛−𝑘

)︀
terms corresponding to 𝑐𝑘.

So reading the Majorana formula in reverse, it tells us that if we want to go from a polynomial to a spin state, we
should divide each coefficient by the square root of the number of terms in Vieta’s formula that contribute to it, and
multiply by the power of −1.

The importance of the latter becomes clear, if we consider the simplest case of a monomial (aka a qubit). Suppose

we want the star to be in the 𝑋+ direction. As an unnormalized spin state, this is
(︂

1
1

)︂
, and as an extended complex

coordinate, this is just 𝑧 = 1. So our monomial is 𝑧 − 1 = 0. But if we want to convert the coefficients of this
monomial into the components of the spin, we have to flip the negative sign. The powers of −1 in the Majorana
formula handle this in the general case.

Here are some interesting videos showing the dynamics. As I said, a rotation rotates all the stars individually:

If a spin is in an eigenstate of some Hamiltonian, its constellation will be fixed. But if you perturb it out of the
eigenstate, the stars will precess around their former locations:

This can lead to some cool effects:

If you perturb them far enough, they start to swap places:

And finally, you can have as many stars as you please! They look like little charged particle confined to the surface of
the sphere, and there is indeed something to that analogy as work by Leboeuf and Bruno have shown.
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Check out the documentation for MajoranaSphere to learn how to leave trails (set make_trails=True), as
well as how to set the color of the stars. Beware though, if you do this, there may be some numerical errors, since
when the polynomial solver returns the roots, they won’t necessarily be in the same order every time! I have a hack to
get around this, but it isn’t perfect.

2.1.3 Spin Coherent States

Probably the best way to understand why the Majorana construction works is in terms of “spin coherent states.” Spin
coherent states have all their angular momentum concentrated in one direction on the sphere. In other words, all their
“stars” all coincide at just one point. As such, for a given 𝑗 value, there is a spin coherent state for each point on
the sphere. It turns out that the spin coherent basis form an overcomplete basis or “frame” for spin states. This is, of
course, not an othogonal basis, and indeed, there are an infinite number of elements: but knowing the amplitudes of a
given spin state on each of the spin coherent states determines the state. In other words, the spin coherent states form
a resolution of the identity.

So for example, just as we write 𝜓(𝑥) for ⟨𝑥 | 𝜓⟩ for a position wavefunction, for a spin, we could write 𝜓(𝑧) = ⟨𝑧 |
𝜓⟩, where 𝑧 represents a point on the sphere given as a extended complex coordinate.

Now it turns out, if we normalize our Majorana polynomial 𝑝(𝑧) from before:

𝑝(𝑧) = 𝑒−2𝑖𝑗𝜃

(1+𝑟2)𝑗

∑︀𝑚=𝑗
𝑚=−𝑗(−1)𝑗+𝑚

√︁(︀
2𝑗

𝑗−𝑚

)︀
𝑎𝑗+𝑚𝑧

𝑗−𝑚

Where 𝑧 = 𝑟𝑒𝑖𝜃, then:

⟨𝑧 | 𝜓⟩ = 𝑝(𝑧)

Where 𝑧 is the point antipodal to 𝑧 on the sphere, and | 𝑧⟩ is the spin coherent state with all the stars at the point 𝑧.
Note that to evaluate the Majorana polynomial at ∞, it suffices to return the coefficient corresponding to the highest
degree (and normalized in the above case). This amounts to evaluating the polynomial at 0 in a flipped coordinate
chart.

In other words, the spin coherent amplitude will always be 0 opposite to a Majorana star. Another way of saying this
is that the Majorana stars represent those directions for which there is a 0% chance that all the angular momentum
will be concentrated in the opposite direction. This gives them an operational meaning: if I send a spin through a
Stern-Gerlach oriented in the direction of a star, then there’s a 0% chance that it’ll be found in the state with all the
angular momentum in the opposite direction. Moreover, the spin state is fully characterized by these 0 probability
points. Indeed, one can work with the probability distribution itself (often called a Husimi distribution) with no loss
of generality (up to phase), since it has the same 0’s.

Note that the normalization makes the resulting function non-holomorphic.

[29]: from spheres import *

j = 3/2
spin = qt.rand_ket(int(2*j+1))
p = spin_poly(spin, projective=True, normalized=True)
s = lambda z: (spin_coherent(j, antipodal(z), from_complex=True).dag()*spin)[0][0][0]

c = rand_c()
print("majorana: %s" % p(c))
print("spin coherent: %s" % s(c))

majorana: (0.5726321887977408+0.36878212146672185j)
spin coherent: (0.5726321887977408+0.3687821214667217j)

We could have also done it in terms of cartesian coordinates:
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[30]: from spheres import *

j = 3/2
spin = qt.rand_ket(int(2*j+1))
p = spin_poly(spin, cartesian=True, normalized=True)
s = lambda xyz: (spin_coherent(j, -xyz).dag()*spin)[0][0][0]

xyz = rand_xyz()
print("majorana: %s" % p(xyz))
print("spin coherent: %s" % s(xyz))

majorana: (-0.3381956446920869-0.3644345696570041j)
spin coherent: (-0.33819564469208685-0.3644345696570041j)

If we further normalize the Majorana polynomial by
√︁

2𝑗+1
4𝜋 , then we can express the inner product between two spin

states as an integral over the sphere:

[31]: from spheres import *

a = qt.rand_ket(3)
b = qt.rand_ket(3)
print("amplitude: %s " % (a.dag()*b)[0][0][0])

a_func = spin_poly(a, for_integration=True)
b_func = spin_poly(b, for_integration=True)

import quadpy
scheme = quadpy.u3.get_good_scheme(19)
print("amplitude %s" % scheme.integrate_spherical(lambda sph: a_func(sph).conj()*b_
→˓func(sph)))

print("amplitude %s" % spherical_inner(a_func, b_func))

amplitude: (0.15085036103837118+0.6265137597537351j)
amplitude (0.15085036103837118+0.6265137597537351j)
amplitude (0.15085036103837118+0.6265137597537351j)

We can visualize the spin coherent amplitudes as arrows at each point on the sphere. Observe how the “spin coherent
wavefunction” is 0 opposite to the stars.

[ ]: from spheres import *
scene = vp.canvas(background=vp.color.white)

spin = qt.rand_ket(3)
m = MajoranaSphere(spin, show_wavefunction=True, wavefunction_type="coherent",
→˓scene=scene)

Alternatively, we can visualize the normalized Majorana function itself whose 0’s are the stars.

[ ]: scene = vp.canvas(background=vp.color.white)
n = MajoranaSphere(spin, show_wavefunction=True, wavefunction_type="majorana",
→˓scene=scene)

Finally, here’s a cute algebraic demonstration of why this works:

Suppose we have some spin-1 vector: | 𝜓⟩ =

⎛⎝𝑎𝑏
𝑐

⎞⎠. Its Majorana polynomial is 𝑝(𝑧) = 𝑎𝑧2 −
√

2𝑏𝑧 + 𝑐.
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Meanwhile, we form a spin-1 coherent polynomial, which will have two stars at a given point 𝛼:

(𝑧 − 𝛼)2 = 𝑧2 − 2𝛼𝑧 + 𝛼2

And then convert it into a ket:

⎛⎝ 1
2√
2
𝛼

𝛼2

⎞⎠ =

⎛⎝ 1√
2𝛼
𝛼2

⎞⎠ .

Now let’s rename 𝛼 to 𝑧:

⎛⎝ 1√
2𝑧
𝑧2

⎞⎠
Just for show, why not normalize it?

𝑁 = 1√
1+2𝑧𝑧*+(𝑧2)(𝑧2)*

= 1√
1+2|𝑧|2+|𝑧|4

= 1√
(1+|𝑧|2)2

= 1
1+|𝑧|2

Giving: 1
1+|𝑧|2

⎛⎝ 1√
2𝑧
𝑧2

⎞⎠.

Now let’s form the inner product ⟨𝜓 | 𝑧⟩. (Technically, we want ⟨𝑧 | 𝜓⟩, but ⟨𝑧 | 𝜓⟩ = ⟨𝜓 | 𝑧⟩*, and this is easier for
this demonstration.)

(︀
𝑎* 𝑏* 𝑐*

)︀
1

1+|𝑧|2

⎛⎝ 1√
2𝑧
𝑧2

⎞⎠ = 1
1+|𝑧|2

(︀
𝑎* +

√
2𝑏*𝑧 + 𝑐*𝑧2

)︀
So now we have: ℎ(𝑧) = 1

1+|𝑧|2
(︀
𝑐*𝑧2 +

√
2𝑏*𝑧 + 𝑎*

)︀
.

Now it happens that if we take a complex vector, flip its components left/right, complex conjugate the elements, and
flip every other sign, then we get the antipodal constellation.

[32]: spin = qt.rand_ket(5)
print("stars:\n%s" % spin_xyz(spin))

antipodal_spin = qt.Qobj(np.array([c*(-1)**i for i, c in enumerate(components(spin).
→˓conj()[::-1])]))
print("antipodal stars:\n%s" % spin_xyz(antipodal_spin))

stars:
[[ 0.61569799 -0.18244856 -0.76656931]
[ 0.81965758 -0.55147919 0.15502305]
[-0.08533574 0.98796788 0.12898561]
[-0.98417313 0.11334806 0.13621846]]

antipodal stars:
[[ 0.98417313 -0.11334806 -0.13621846]
[ 0.08533574 -0.98796788 -0.12898561]
[-0.81965758 0.55147919 -0.15502305]
[-0.61569799 0.18244856 0.76656931]]

So let’s do that:

So: ℎ(𝑧) → 𝑝(𝑧) = 1
1+|𝑧|2

(︀
𝑎𝑧2 −

√
2𝑏𝑧 + 𝑐

)︀
.

Ignoring the normalization, which was just for fun, and plugging this into the reverse Majorana polynomial, we obtain

the ket:

⎛⎝𝑎𝑏
𝑐

⎞⎠, which is exactly what we started with.
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2.1.4 Bibliography
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2.2 How to Prepare a Permutation Symmetric Multiqubit State on an
Actual Quantum Computer

It turns out that one can represent a spin-𝑗 state equivalently as a permutation symmetric state of 2𝑗 qubits. And this
is good because given that our quantum computers (mostly) work with qubits, we need a way to represent everything
we might care about in terms of them.

For example, if we have a spin- 32 state, we could express it in the usual | 𝑗,𝑚⟩ basis as:

𝑎 | 3

2
,

3

2
⟩ + 𝑏 | 3

2
,

1

2
⟩ + 𝑐 | 3

2
,−1

2
⟩ + 𝑑 | 3

2
,−3

2
⟩

or in terms of symmeterized qubits:

𝑎 |↑↑↑⟩ + 𝑏
1√
3

(|↑↑↓⟩+ |↑↓↑⟩+ |↓↑↑⟩) + 𝑐
1√
3

(|↓↓↑⟩+ |↓↑↓⟩+ |↑↓↓⟩) + 𝑑 |↓↓↓⟩

In other words, there’s a one-to-one correspondence between the four | 𝑗,𝑚⟩ basis states and the four symmetric basis
states of three qubits. To wit: the states with 3 ↑, with 2 ↑, 1 ↓, with 2 ↓, 1 ↑, and with 3 ↓.

So we can easily form a linear map that takes us from the one representation to the other:

[1]: from spheres import *

def symmetrize(pieces):
return sum([qt.tensor(*[pieces[i] for i in perm]) for perm in

→˓permutations(range(len(pieces)))]).unit()

def spin_sym_map(j):
if j == 0:

return qt.Qobj(1)
S = qt.Qobj(np.vstack([\

components(symmetrize(\
[qt.basis(2,0)]*int(2*j-i)+\
[qt.basis(2,1)]*i))\

for i in range(int(2*j+1))]).T)
S.dims =[[2]*int(2*j), [int(2*j+1)]]
return S

j = 3/2
d = int(2*j+1)
S = spin_sym_map(j)

spin = qt.rand_ket(d)
sym = S*spin

(continues on next page)
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(continued from previous page)

print("spin state:\n%s" % spin)
print("\npermutation symmetric qubits:\n%s" % sym)

I = S.dag()*S
print("\ntransformation an isometry?: %s" % (I == qt.identity(I.shape[0])))

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

spin state:
Quantum object: dims = [[4], [1]], shape = (4, 1), type = ket
Qobj data =
[[ 0.2680114 -0.33141963j]
[-0.06116115+0.26914443j]
[-0.54797038-0.31029464j]
[-0.58359679-0.07079553j]]

permutation symmetric qubits:
Quantum object: dims = [[2, 2, 2], [1]], shape = (8, 1), type = ket
Qobj data =
[[ 0.2680114 -0.33141963j]
[-0.0353114 +0.15539061j]
[-0.0353114 +0.15539061j]
[-0.31637084-0.17914869j]
[-0.0353114 +0.15539061j]
[-0.31637084-0.17914869j]
[-0.31637084-0.17914869j]
[-0.58359679-0.07079553j]]

transformation an isometry?: True

Another way of obtaining the same result is to find the roots of the Majorana polynomial of the spin, map the complex
roots to the sphere, convert each resulting point into a qubit, and then symmeterize those separable qubits. Well,
technically, if we do this, we lose the overall phase information of the original spin, but such is life.

Just for reference, again here’s the Majorana polynomial:

𝑝(𝑧) =

𝑚=𝑗∑︁
𝑚=−𝑗

(−1)𝑗+𝑚

√︃
(2𝑗)!

(𝑗 −𝑚)!(𝑗 +𝑚)!
𝑎𝑗+𝑚𝑧

𝑗−𝑚

Where the 𝑎’s run through the components of the spin. Recall that if we have an 𝑑 dimensional spin vector, but end up
with a less than 𝑑 degree polynomial, we add a root at infinity for each missing degree. Having obtained the roots, we
stereographically project them to the sphere to get (𝑥, 𝑦, 𝑧) points, which we enjoy poetically calling “stars.”

The connection to permutation symmetry is that the roots are contained “unordered” in the polynomial!

Below we take a spin, finds its stars, convert them into qubits, symmeterize the qubits, then use the inverse of the
transformation above to get back the spin state, and find the stars again. We see we recover the original stars exactly.
So we get the right result up to phase. (Note we could have converted the complex roots directly to qubits, as we’ve
seen, insofar as each complex root is to be the ratio between the two components of the qubit.)

[4]: stars = spin_xyz(spin)
qubits = [qt.Qobj(xyz_spinor(star)) for star in stars]
sym2 = symmetrize(qubits)
spin2 = S.dag()*sym2
stars2 = spin_xyz(spin2)

(continues on next page)
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(continued from previous page)

print("initial stars:\n%s\n" % "\n".join([str(star) for star in stars]))
print("final stars:\n%s\n" % "\n".join([str(star) for star in stars2]))

initial stars:
[-0.74108075 -0.2676052 -0.61578144]
[ 0.32802509 0.85798535 -0.39529822]
[ 0.63479369 -0.38107314 0.67217574]

final stars:
[-0.74108075 -0.2676052 -0.61578144]
[ 0.32802509 0.85798535 -0.39529822]
[ 0.63479369 -0.38107314 0.67217574]

Another way of saying this is that if we have a state of 2𝑗 separable qubits, each with an (𝑥, 𝑦, 𝑧) point representing
its expected rotation axis, if we permute the qubits in all possible orders and add up all these permuted states, then the
resulting state is naturally permutation symmetric, but also perhaps remarkably preserves the (𝑥, 𝑦, 𝑧) points of each
of the qubits. Each point is now encoded not individually in the separable qubits, but instead holistically in the state of
the entangled whole. If we transform from the symmeterized qubits to a spin-𝑗 state and find the roots of the Majorana
polynomial, these complex roots, stereographically projected to the sphere, gives us back our original (𝑥, 𝑦, 𝑧) points.
Of course, we have thrown out some information: namely, the phases of the individual qubits we symmeterized.

That’s all well and good, but a moment’s reflection will convince you that the operation of symmeterizing a bunch
of qubits is not a unitary operation. After all, I need to make a separate copy of the qubits, one for each possible
permutation, and then add them all up. This of course would violate no-cloning.

So you might wonder: Suppose I have 2𝑗 separable qubits loaded into my quantum computer, and I want to prepare the
permutation symmetric state corresponding to them. How do I do it?! Clearly, there can be no deterministic quantum
operation that will do the trick.

Well, in this game, what one can’t do deterministically, one can often do probablistically. And that turns out to be the
case here.

Consider the following circuit:

The heart of this circuit is the “controlled swap” or Fredkin gate. This is a three qubit gate: if the first qubit is ↑, it
leaves the second two alone; but if the first qubit is ↓, it swaps/permutes the second two.
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Its matrix representation is: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Which is easily obtained insofar as its just a 4 × 4 identity block concatenated with the usual swap gate:⎡⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
By the way, that’s a general rule for constructing controlled gates: just take the gate you want to be controlled by the
first qubit, and concatenate it with an identity matrix of the same dimensionality.

So we have our two qubits we want to symmetrize, and the control qubit, with starts in the |↑⟩ state. We apply a
Hadamard gate to the control, which takes it to an even superposition 1√

2
(|↑⟩+ |↓⟩. So then when we apply the

Fredkin, the two qubits to be symmetrized end up in a superposition of being swapped and not being swapped, relative
to the control. We then apply a Hadamard again to the control, which by the way, is its own inverse (𝐻 = 𝐻†), to
undo that original rotation, while leaving it entangled with the two qubits.

We then measure the control qubit: if we get ↑, then our two qubits | 𝜓⟩ and | 𝜑⟩ end up in the symmetrized state
1√
2
(| 𝜓⟩ | 𝜑⟩+ | 𝜑⟩ | 𝜓⟩). On the other hand, we get ↓, then our two qubits ends up in the antisymmetrized state:

1√
2
(| 𝜓⟩ | 𝜑⟩− | 𝜑⟩ | 𝜓⟩).

So if we want the symmetrized state, we just keep doing the experiment over and over again until we get the answer
we want!

In the diagram above, you may note there are also two phase rotation gates. We can use those if we want a state of the
form 1√

2
(| 𝜑⟩ | 𝜓⟩ + 𝑒𝑖𝜃 | 𝜓⟩ | 𝜑⟩. If 𝜃 = 0, we just get the identity matrix for both of them, and everything is as I

said above.

[5]: from scipy.linalg import block_diag

# construct our operators
H = (1/np.sqrt(2))*qt.Qobj(np.array([[1,1],\

[1,-1]]))
SWAP = qt.Qobj(np.array([[1,0,0,0],\

[0,0,1,0],\
[0,1,0,0],\
[0,0,0,1]]))

CSWAP = qt.Qobj(block_diag(np.eye(4), SWAP.full()))
CSWAP.dims = [[2,2,2], [2,2,2]]

theta = 0
P1 = qt.Qobj(np.array([[np.exp(1j*theta/2), 0],\

[0, 1]]))
P2 = qt.Qobj(np.array([[1, 0],\

[0, np.exp(1j*theta/2)]]))

CIRCUIT = qt.tensor(H, qt.identity(2), qt.identity(2))*\
qt.tensor(P2, qt.identity(2), qt.identity(2))*\

(continues on next page)
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CSWAP*\
qt.tensor(P1, qt.identity(2), qt.identity(2))*\
qt.tensor(H, qt.identity(2), qt.identity(2))

c = qt.basis(2,0) # control
a, b = qt.rand_ket(2), qt.rand_ket(2) # to be symmetrized
state = qt.tensor(c, a, b)

def measure_control(state):
Zl, Zv = qt.sigmaz().eigenstates()
Zp = [v*v.dag() for v in Zv][::-1]
dm = state.ptrace(0).full().real
which = np.random.choice(list(range(2)), p=np.diag(dm))
print("p(up): %.4f" % (dm[0,0]))
print("p(down): %.4f" % (dm[1,1]))
print("obtained: %s" % ("up" if which == 0 else "down"))
return which, (qt.tensor(Zp[which], qt.identity(2), qt.identity(2))*state).unit()

which, state = measure_control(CIRCUIT*state)
answer = state.ptrace((1,2)) # throw out the control

correct_sym = (qt.tensor(a,b) + qt.tensor(b,a)).unit()
correct_sym = correct_sym*correct_sym.dag()
correct_antisym = (qt.tensor(a,b) - qt.tensor(b,a)).unit()
correct_antisym = correct_antisym*correct_antisym.dag()

if which == 0:
print("got correct symmetrized state?: %s" % (answer == correct_sym))

else:
print("got correct antisymmetrized state?: %s" % (answer == correct_antisym))

p(up): 0.6648
p(down): 0.3352
obtained: up
got correct symmetrized state?: True

Okay, so that’s great, but what if we have multiple qubits we want to symmetrize?

The simplest thing to do is a direct generalization of the above. If we have 𝑛 qubits, there will be 𝑛! possible per-
mutations. So we’ll need a control qudit that lives in 𝑛! dimensions. For example, for 3 qubits, there are 3! = 6
possible permutations, so we need a control state that is 6 dimensional. We start with the control in its | 0⟩ state, and
the apply the Hadamard in 𝑛! dimensions, in other words, the Quantum Fourier Transform, which takes | 0⟩ to an even
superposition of all its basis states. We then do a controlled operation, which makes performing the 𝑖𝑡ℎ permutation on
the 𝑛 qubits depend on the control being in the | 𝑖⟩ basis state. So we end up with the 𝑛 qubits being in a superposition
of being permuted in all possible ways, relative to the control. Then we apply the inverse QFT to the control, and
then measure the control: if it ends up back in the | 0⟩ state, then the 𝑛 qubits are in the permutation symmetric state.
Sweet!

You might wonder how to contruct such a controlled permutation gate. In braket notation, you can think of it like:∑︁
𝑝𝑖∈𝑝𝑒𝑟𝑚

2𝑛∑︁
𝑗=0

| 𝑖⟩𝑃𝑖 | 𝑗⟩⟨𝑖 | ⟨𝑗 |

In other words, we sum over all the permutations 𝑝𝑖 (where the 𝑖 labels both a basis state of the control | 𝑖⟩, and also 𝑃𝑖,
the operator which performs that permutation of the qubits), and also over the 2𝑛 basis states of the 𝑛 qubits, labeled
by 𝑗: | 𝑗⟩. Clearly, if this operator acts on a state coming in on the right, it will perform the 𝑖𝑡ℎ permutation to the
extent that the control is in the 𝑖𝑡ℎ state.
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Let’s check it out:

[19]: import math
from itertools import product

# constructs a unitary operation that performs
# the provided permutation of qubit subsystems
def construct_permuter(perm):

indices = [[(i, j) for j in range(2)] for i in range(len(perm))]
tensor_indices = list(product(*indices))
pindices = [[(i, j) for j in range(2)] for i in perm]
ptensor_indices = list(product(*pindices))
m = np.zeros((len(tensor_indices),len(tensor_indices)))
for i, pind in enumerate(ptensor_indices):

m[i, [tensor_indices.index(p) for p in permutations(pind) if p in tensor_
→˓indices][0]] = 1

return qt.Qobj(m)

# quantum fourier transform of dimension d
def construct_qft(d):

w = np.exp(2*np.pi*1j/d)
return (1/np.sqrt(d))*\

qt.Qobj(np.array([[w**(i*j)\
for j in range(d)]\

for i in range(d)]))

# constructs a unitary operator that does each of n!
# permutations of n qubits relative to a control of
# dimensionality n!
def construct_cnrl_permutations(n):

d = 2**n
r = math.factorial(n)
perms = list(permutations(list(range(n))))
O = sum([qt.tensor(qt.basis(r, i), construct_permuter(p)*qt.basis(d, j))*\

qt.tensor(qt.basis(r, i), qt.basis(d, j)).dag()\
for j in range(d) for i, p in enumerate(perms)])

O.dims = [[r]+[2]*n, [r]+[2]*n]
return O

################################################################################

n = 3
r = math.factorial(n)
qubits = [qt.rand_ket(2) for i in range(n)]

QFT = qt.tensor(construct_qft(r), *[qt.identity(2)]*n)
CPERMS = construct_cnrl_permutations(n)
PROJ = qt.tensor(qt.basis(r, 0)*qt.basis(r, 0).dag(), *[qt.identity(2)]*n)

state = qt.tensor(qt.basis(r, 0), *qubits)
state = QFT.dag()*CPERMS*QFT*state

# We're lazy, so let's just project into the right state, regardless of probability
final_state = (PROJ*state).unit().ptrace(list(range(1, n+1))) # throw out the control
correct_state = symmetrize(qubits)
correct_state = correct_state*correct_state.dag()

print("got the right permutation symmetric state?: %s" % (final_state == correct_
→˓state)) (continues on next page)
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got the right permutation symmetric state?: True

Okay, the final concern you might have is that our control system is 𝑛! dimensions, where 𝑛 is the number of qubits
we want to symmetrize. We, however, want to formulate everything in terms of qubits. Is there a way of using several
qubits as controls to get the same effect? Yes! And here’s how, thanks to Barenco, Berthiaume, Deutsch, Ekert, Jozsa,
and Macchiavello (see reference at the end!).

The basic conceptual idea is that permutations can be broken down recursively into a a series of swaps. E.g., suppose
we start with an element 𝐴. We pop another element 𝐵 to the right, and perform the two possible permutations, the
identity and the swap:

𝐴(𝐵) → 𝐴𝐵,𝐵𝐴

.

These are the two possible permutations of two elements. We could pop another element 𝐶 to the right in each case:
𝐴→ 𝐴𝐵(𝐶), 𝐵𝐴(𝐶), and then do all the possible swaps with 𝐶:

𝐴𝐵(𝐶) → 𝐴𝐵𝐶,𝐶𝐵𝐴,𝐴𝐶𝐵

and

𝐵𝐴(𝐶) → 𝐵𝐴𝐶,𝐶𝐴𝐵,𝐵𝐶𝐴

Indeed, these are the six possible permutations of three elements. We could pop another element 𝐷 to the right, and
do all the possible swaps with 𝐷:

𝐴𝐵𝐶(𝐷) → 𝐴𝐵𝐶𝐷,𝐷𝐵𝐶𝐴,𝐴𝐷𝐶𝐵,𝐴𝐵𝐷𝐶

𝐶𝐵𝐴(𝐷) → 𝐶𝐵𝐴𝐷,𝐷𝐵𝐴𝐶,𝐶𝐷𝐴𝐵,𝐶𝐵𝐷𝐴

𝐴𝐶𝐵(𝐷) → 𝐴𝐶𝐵𝐷,𝐷𝐶𝐵𝐴,𝐴𝐷𝐵𝐶,𝐴𝐶𝐷𝐵

𝐵𝐴𝐶(𝐷) → 𝐵𝐴𝐶𝐷,𝐷𝐴𝐶𝐵,𝐵𝐷𝐶𝐴,𝐵𝐴𝐷𝐶

𝐶𝐴𝐵(𝐷) → 𝐶𝐴𝐵𝐷,𝐷𝐴𝐵𝐶,𝐶𝐷𝐵𝐴,𝐶𝐴𝐷𝐵

𝐵𝐶𝐴(𝐷) → 𝐵𝐶𝐴𝐷,𝐷𝐶𝐴𝐵,𝐵𝐷𝐴𝐶,𝐵𝐶𝐷𝐴

These are the 24 possible permutations of four elements, and so on. So what we have to do is translate this idea into a
quantum circuit, controlling the individual swaps with qubits.

First off, let’s define:

𝑅𝑘 =
1√
𝑘 + 1

[︂
1 −

√
𝑘√

𝑘 1

]︂

𝑇𝑘,𝑗 =
1√

𝑘 − 𝑗 + 1

⎡⎢⎢⎣
√
𝑘 − 𝑗 + 1 0 0 0

0 1
√
𝑘 − 𝑗 0

0 −
√
𝑘 − 𝑗 1 0

0 0 0
√
𝑘 − 𝑗 + 1

⎤⎥⎥⎦
The point of these guys it to prepare our control qubits. If we have 𝑘 control qubits in the | 0, 0, 0, . . . ⟩ state, if we
apply 𝑅𝑘 to the first qubit, and 𝑇𝑘,𝑗’s to adjacent qubits along the line (from 𝑗 = 1 to 𝑗 = 𝑘− 1), then we’ll end up in
the state:

1√
𝑘 + 1

(| 00 . . . 0⟩+ | 10 . . . 0⟩+ | 01 . . . 0⟩+ | 00 . . . 1⟩)
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In other words, a superposition over all the qubits being ↑ or just one of the qubits being ↓. (Recall in this notation | 0⟩
= |↑⟩, etc.) This is the qubit equivalent of our control qudit from before being prepared in an even superposition of all
its basis states. Call this whole procedure 𝑈𝑘.

So we have 𝑘 control qubits prepared. In line with the recursive permutation procedure above, this is in the context
of having already symmetrized 𝑘 qubits and we want to symmetrize an additional 𝑘 + 1𝑡ℎ qubit. Having prepared the
𝑘 control qubits, we apply 𝑘 Fredkin gates. If 𝑗 runs from 1 to 𝑘, then the 𝑗𝑡ℎ Fredkin uses the 𝑗𝑡ℎ control qubit to
condition the swapping of the 𝑗𝑡ℎ and 𝑘 + 1𝑡ℎ qubits. Then, we as before apply the inverse of the preparation of the
control qubits, 𝑈†

𝑘 .

The whole construction is “cascaded” for 𝑘 = 1, 2, . . . , 𝑛−1, where 𝑛 is the number of qubits we want to symmetrize.
So we start with 𝑘 = 1: we’ve “already symmetrized” one qubit and we want to symmetrize the next one, so we
introduce 𝑘 = 1 control qubits, preparing them, and then fredkin-ing, and unpreparing. Then we move on to 𝑘 = 2,
and we add two more control qubits, prepare them, fredkin, and unprepare, etc. In the end, we’ll need 𝑛(𝑛−1)

2 control
qubits in total: so if 𝑛 = 4, we have 4(4−1)

2 = 6 control qubits.

Finally, we measure all the controls, and if they’re all in the 0/ ↑ state, then our qubits will have been symmetrized!

Here’s the circuit for the 𝑛 = 4 case:

The key is that, for example, by the third round, the first three qubits have already been symmetrized, so we only need
three controlled swaps to symmetrize them with the fourth.

Let’s check it out! (Note that the indices are offset from the discussion above as we start counting from 0 as opposed
to 1.)
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[25]: from qutip.qip.operations import fredkin

def Rk(k):
return (1/np.sqrt(k+1))*qt.Qobj(np.array([[1, -np.sqrt(k)],\

[np.sqrt(k), 1]]))

def Tkj(k, j):
T = (1/np.sqrt(k-j+1))*qt.Qobj(np.array([[np.sqrt(k-j+1), 0, 0, 0],\

[0, 1, np.sqrt(k-j), 0],\
[0, -np.sqrt(k-j), 1, 0],\
[0, 0, 0, np.sqrt(k-j+1)]]))

T.dims = [[2,2], [2,2]]
return T

################################################################################

n = 4
r = int(n*(n-1)/2)
qubits = [qt.rand_ket(2) for i in range(n)]
state = qt.tensor(*[qt.basis(2,0)]*r, *qubits)

offset = r
for k in range(1, n):

offset = offset-k
U = upgrade(Rk(k), offset, n+r)
for j in range(k-1):

T = qt.tensor(*[qt.identity(2)]*(offset+j), Tkj(k, j+1), *[qt.
→˓identity(2)]*(r+n-offset-j-2))

U = T*U
state = U*state
for j in range(k):

state = fredkin(N=n+r, control=offset+j, targets=[r+j, r+k])*state
state = U.dag()*state

print("used %d control qubits for %d qubits to be symmetrized" % (r, n))

# do our projections
for i in range(r):

state = (tensor_upgrade(qt.basis(2,0)*qt.basis(2,0).dag(), i, len(state.
→˓dims[0]))*state).unit()

final_state = state.ptrace(list(range(r, r+n)))
correct_state = symmetrize(qubits)
correct_state = correct_state*correct_state.dag()

print("got the right permutation symmetric state?: %s" % (final_state == correct_
→˓state))

used 6 control qubits for 4 qubits to be symmetrized
got the right permutation symmetric state?: True

Finally, let’s run it on an actual quantum computer! We’ll be using IBM’s qiskit for the job. If you look at the circuit
preparation, you’ll notice many of the indices have been flipped due to their convention of treating the tensor product
of 𝐴 and 𝐵 as 𝐵 ⊗ 𝐴. We prepare our qubits, and then use qiskit’s tomography feature to recover the density matrix
of the symmetrized qubits, conditioned on the controls all being 0. You can also find the code here. Give it a whirl.

[28]: import numpy as np
import qutip as qt

(continues on next page)
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(continued from previous page)

from copy import deepcopy
from math import factorial
from itertools import product

from qiskit import QuantumCircuit, execute, ClassicalRegister
from qiskit import Aer, IBMQ, transpile
from qiskit.providers.ibmq.managed import IBMQJobManager
from qiskit.quantum_info.operators import Operator
from qiskit.ignis.verification.tomography import state_tomography_circuits,
→˓StateTomographyFitter

from spheres import *

############################################################################

# symmetrized tensor product
def symmetrize(pieces):

return sum([qt.tensor(*[pieces[i] for i in perm]) for perm in
→˓permutations(range(len(pieces)))]).unit()

# constructs linear map between spin-j states and the states of
# 2j symmetrized qubits
def spin_sym_map(j):

if j == 0:
return qt.Qobj(1)

S = qt.Qobj(np.vstack([\
components(symmetrize(\

[qt.basis(2,0)]*int(2*j-i)+\
[qt.basis(2,1)]*i))\

for i in range(int(2*j+1))]).T)
S.dims =[[2]*int(2*j), [int(2*j+1)]]
return S

############################################################################

# convert back and forth from cartesian to spherical coordinates
def xyz_sph(xyz):

x, y, z = xyz
return np.array([np.arccos(z/np.sqrt(x**2+y**2+z**2)),\

np.mod(np.arctan2(y, x), 2*np.pi)])

def sph_xyz(sph):
theta, phi = sph
return np.array([np.sin(theta)*np.cos(phi),\

np.sin(theta)*np.sin(phi),\
np.cos(theta)])

############################################################################

# operators for preparing the control qubits
def Rk(k):

return Operator((1/np.sqrt(k+1))*\
np.array([[1, -np.sqrt(k)],\

[np.sqrt(k), 1]]))

(continues on next page)
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(continued from previous page)

def Tkj(k, j):
return Operator((1/np.sqrt(k-j+1))*\

np.array([[np.sqrt(k-j+1), 0, 0, 0],\
[0, 1, np.sqrt(k-j), 0],\
[0, -np.sqrt(k-j), 1, 0],\
[0, 0, 0, np.sqrt(k-j+1)]]))

############################################################################

j = 3/2
backend_name = "qasm_simulator"
shots = 10000

#backend_name = "ibmq_qasm_simulator"
#backend_name = "ibmq_16_melbourne"
#backend_name = "ibmq_athens"
#shots = 8192

############################################################################

d = int(2*j+1)
n = int(2*j)
r = int(n*(n-1)/2)

# construct a spin state, get the XYZ locations of the stars
# and convert to spherical coordinates
spin_state = qt.rand_ket(d)
angles = spin_sph(spin_state)

# the first p qubits are the control qubits
# the next n are the qubits to be symmetrized
circ = QuantumCircuit(r+n)

# rotate the n qubits so they're pointing in the
# directions of the stars
for i in range(n):

theta, phi = angles[i]
circ.ry(theta, r+i)
circ.rz(phi, r+i)

# apply the symmetrization algorithm:
# iterate over k, working with k control qubits
# in each round: apply the preparation to the controls
# (the U's and T's), then the fredkins, then the inverse
# of the control preparation.
offset = r
for k in range(1, n):

offset = offset-k
circ.append(Rk(k), [offset])
for i in range(k-1):

circ.append(Tkj(k, i+1), [offset+i+1, offset+i])
for i in range(k-1, -1, -1): # because it's prettier

circ.fredkin(offset+i, r+k, r+i)
for i in range(k-2, -1, -1):

circ.append(Tkj(k, i+1).adjoint(), [offset+i+1, offset+i])
circ.append(Rk(k).adjoint(), [offset])

(continues on next page)
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(continued from previous page)

# let's look at it!
print(circ.draw())

# create a collection of circuits to do tomography
# on just the qubits to be symmetrized
tomog_circs = state_tomography_circuits(circ, list(range(r, r+n)))

# create a copy for later
tomog_circs_sans_aux = deepcopy(tomog_circs)

# add in the measurements of the controls to
# the tomography circuits
ca = ClassicalRegister(r)
for tomog_circ in tomog_circs:

tomog_circ.add_register(ca)
for i in range(r):

tomog_circ.measure(i,ca[i])

# run on the backend
if backend_name == "qasm_simulator":

backend = Aer.get_backend("qasm_simulator")
job = execute(tomog_circs, backend, shots=shots)
raw_results = job.result()

else:
provider = IBMQ.load_account()
job_manager = IBMQJobManager()
backend = provider.get_backend(backend_name)
job = job_manager.run(transpile(tomog_circs, backend=backend),\

backend=backend, name="spin_sym", shots=shots)
raw_results = job.results().combine_results()

# have to hack the results to implement post-selection
# on the controls all being 0's:
new_result = deepcopy(raw_results)
for resultidx, _ in enumerate(raw_results.results):

old_counts = raw_results.get_counts(resultidx)
new_counts = {}

# remove the internal info associated to the control registers
new_result.results[resultidx].header.creg_sizes = [new_result.results[resultidx].

→˓header.creg_sizes[0]]
new_result.results[resultidx].header.clbit_labels = new_result.results[resultidx].

→˓header.clbit_labels[0:-r]
new_result.results[resultidx].header.memory_slots = n

# go through the results, and only keep the counts associated
# to the desired post-selection of all 0's on the controls
for reg_key in old_counts:

reg_bits = reg_key.split(" ")
if reg_bits[0] == "0"*r:

new_counts[reg_bits[1]] = old_counts[reg_key]
new_result.results[resultidx].data.counts = new_counts

# fit the results (note we use the copy of the tomography circuits
# w/o the measurements of the controls) and obtain a density matrix
tomog_fit = StateTomographyFitter(new_result, tomog_circs_sans_aux)
rho = tomog_fit.fit()

(continues on next page)
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# downsize the density matrix for the 2j symmerized qubits
# to the density matrix of a spin-j system, and compare
# to the density matrix of the spin we started out with via the trace
correct_jrho = spin_state*spin_state.dag()
our_jrho = sym_spin(qt.Qobj(rho, dims=[[2]*n, [2]*n]))
print("overlap between actual and expected: %.4f" % (correct_jrho*our_jrho).tr().real)

q_0: unitary 1 1 unitary
unitary unitary

q_1: 0 0

q_2: unitary unitary

q_3: RY(1.9336) RZ(0.9955) X X

q_4: RY(2.0132) RZ(4.5901) X X

q_5: RY(1.2433) RZ(2.9784) X X

overlap between actual and expected: 0.9918

One can use spheres.spin_circuits.qiskit to generate such circuits automatically!

Use spin_sym_qiskit(spin) to generate a Qiskit circuit preparing a given spin state (along with some useful
information packaged into a dictionary).

Use postselect_results_qiskit(circ_info, raw_results) to do postselection, once you have re-
sults.

And finally, use spin_tomography_qiskit(circ_info, backend_name="qasm_simulator",
shots=8000) to run the tomography on a desired backend.

[30]: from spheres import *

spin = qt.rand_ket(3)
correct_dm = spin*spin.dag()
circ_info = spin_sym_qiskit(spin)
tomog_dm = spin_tomography_qiskit(circ_info)
print("overlap between actual and expected: %.4f" % (correct_dm*tomog_dm).tr().real)

overlap between actual and expected: 0.9999
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Stabilization of Quantum Computations By Symmetrization

2.3 How To Prepare a Spin-j State on a Photonic Quantum Computer

By now we all know and love how a spin-j state can be decomposed into 2j “stars” on the sphere. We’ve used this
decomposition to prepare spin-j states in the form of 2j permutation symmetric qubits on IBM’s quantum computer.
Here we’ll see how we can use the same decomposition to prepare a spin-j state on a photonic quantum computer, in
terms of oscillator modes.

For this, we’ll need to recall the “Schwinger oscillator” formulation of spin, which can be thought of as the second
quantization of a qubit. We introduce two harmonic oscillators for each basis state of a qubit (the fundamental, spin- 12
representation). This actually gives us all the higher spin representations for free. You can think of it like one oscillator
counts the number of “↑” quanta and one oscillator counts the number of “↓” quanta. The resulting Fock space can be
interpreted as describing a theory of a variable number of bosonic spin- 12 quanta (aka a theory of symmetric multiqubit
states with different numbers of qubits), or more simply as a tower of spin states, one for each 𝑗.

The easiest way to see this is to rearrange the Fock space of the two oscillators in the follow perspicacious form:

{| 00⟩, | 10⟩, | 01⟩, | 20⟩, | 11⟩, | 02⟩, | 30⟩, | 21⟩, | 12⟩, | 03⟩, . . . }

In other words, we can consider the subspaces with a fixed total number of quanta:

{| 00⟩}

{| 10⟩, | 01⟩}

{| 20⟩, | 11⟩, | 02⟩}

{| 30⟩, | 21⟩, | 12⟩, | 03⟩}

The first subspace is 1 dimensional, and corresponds to a spin-0 state. The second subspace is 2 dimensional, and
corresponds to a spin-12 state. The third subspace is 3 dimensional, and corresponds to a spin-1 state. The fourth
subspace is 4 dimensional, and corresponds to a spin- 32 state. And so on.

In other words, say, for spin- 32 , we have the correspondence:

| 3
2 ,

3
2 ⟩ →| 30⟩

| 3
2 ,

1
2 ⟩ →| 21⟩

| 3
2 ,−

1
2 ⟩ →| 12⟩

| 3
2 ,−

3
2 ⟩ →| 03⟩

And indeed, if we visualize these basis states, they correspond to: 3 stars at the North Pole; 2 stars at the North Pole,
1 star at the South Pole; 1 star at the North Pole, 2 stars at the South Pole; and 3 stars at the South Pole.

For comparison, here’s the same correspondence in terms of symmetric multiqubit states:

| 3
2 ,

3
2 ⟩ → |↑↑↑⟩

| 3
2 ,

1
2 ⟩ →

1√
3

(︁
|↑↑↓⟩+ |↑↓↑⟩+ |↓↑↑⟩

)︁
| 3
2 ,−

1
2 ⟩ →

1√
3

(︁
|↓↓↑⟩+ |↓↑↓⟩+ |↑↓↓⟩

)︁
| 3
2 ,−

3
2 ⟩ → |↓↓↓⟩
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We can see the basis states correspond to a sum over all the states where 𝑛 qubits are ↑ and 2𝑗 − 𝑛 qubits are down.
We can upgrade a spin-j state to the symmetric multiqubit representation by exploiting this correspondence between
basis states, or by preparing 2j qubits pointed in the Majorana directions and taking the permutation symmetric tensor
product.

The justification for doing this comes from considering the Majorana polynomial.

Given a spin state in the | 𝑗,𝑚⟩ representation: $:nbsphinx-math:mid `:nbsphinx-math:psi :nbsphinx-math:rangle `=⎛⎜⎜⎜⎜⎜⎝
𝑎0
𝑎1
𝑎2
𝑎3
...

⎞⎟⎟⎟⎟⎟⎠ $, we form a polynomial in a complex variable 𝑧:

𝑝(𝑧) =
∑︀𝑚=𝑗

𝑚=−𝑗(−1)𝑗+𝑚
√︁(︀

2𝑗
𝑗−𝑚

)︀
𝑎𝑗+𝑚𝑧

𝑗−𝑚

Its roots, stereographically projected from the complex plane to the sphere, yield the constellation. And note if you
lose a degree, you add a root at “infinity” (conventionally, the South Pole).

In other words:

By the fundamental theorem of algebra, a spin-j state factorizes into 2j pieces: clearly the product of the monomials
is independent of the order of multiplication. This corresponds to the permutation symmetric tensor product of qubits,
one for each star.

In a second quantization context, we can upgrade a first quantized operator �̂� to a second quantized operator Ô in an
intuitive way:

Ô =
∑︀

𝑖,𝑗 �̂�
†
𝑖𝑂𝑖𝑗 �̂�𝑗

This can also be interpreting wedging the operator �̂� between a row vector of creation operators and a column vector
of annihilation operators.

We can thus construct second quantized representations of the Pauli matrices, which are the generators of 𝑆𝑈(2)
rotations. Given two oscillators with annihilation operators �̂�0 and �̂�1:

𝜎𝑋 → �̂�†1�̂�0 + �̂�†0�̂�1

𝜎𝑌 → 𝑖(�̂�†1�̂�0 − �̂�†0�̂�1)
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𝜎𝑍 → �̂�†0�̂�0 − �̂�†1�̂�1

The resulting operators will be block diagonal in terms of the different spin sectors, and perform separate rotations in
each sector.

We can also construct creation operators which add a “star.”

Specifically, given a spin- 12 state
(︂
𝛼
𝛽

)︂
, we can upgrade it to the operator 𝛼�̂�†0 + 𝛽�̂�†1.

Repeated applications of such star operators allow one to build up a constellation one star at a time. Another way of
thinking about this is that we can build an operator which raises an entire constellation in the form of a polynomial in
the creation and annihilation operators:

(𝛼0�̂�
† + 𝛽0�̂�

†)(𝛼1�̂�
† + 𝛽1�̂�

†)(𝛼2�̂�
† + 𝛽2�̂�

†) . . .

And this turns out to be the Majorana polynomial in disguise:∑︀𝑚=𝑗
𝑚=−𝑗

√︁(︀
2𝑗

𝑗−𝑚

)︀
𝑎𝑗+𝑚(�̂�†)𝑗−𝑚(�̂�†)𝑗+𝑚

Note the (−1)𝑗+𝑚 factor dissapears. Why? Consider that if we have 𝛼𝑧 + 𝛽 = 𝑧 + 𝛽
𝛼 = 0, we have a root at −𝛽

𝛼 ,
and the (−1)𝑗+𝑚 corrects for this negative sign. So we need the (−1)𝑗+𝑚 when we’re converting from a spin state to
a polynomial to get the correct results. But here we’re working directly with spin states, first and second quantized, so
no need for the (−1)𝑗+𝑚.

So that’s all well and good, we can “raise” a spin-j state from the vacuum of two harmonic oscillators using a special
“constellation creation operator.” But how do we actually prepare such states in practice on a photonic quantum
computer? We can’t just arbitrarily apply creation and annihilation operators–after all, they are neither Hermitian, nor
unitary! We need a way of formulating this entirely in terms of what a photonic quantum computer gives us: the ability
to start with a certain Fock state, the ability to apply unitary transformations, and the ability to make measurements
(for example, photon number measurements).

Intuitively, what we need to do is prepare our 2j “single star” states separately and then somehow combine them
together into a single constellation.

The first thing to realize is that we can perform 𝑆𝑈(2) rotations with beamsplitters.

The beamsplitter gate can be written:

𝐵𝑆(𝜃, 𝜑) = 𝑒𝜃(𝑒
𝑖𝜑�̂�0�̂�

†
1−𝑒−𝑖𝜑�̂�†

0�̂�1)

Here �̂�0 and �̂�1 refer to two photonic modes. 𝜃 is the transmittivity angle. Then the transmission amplitude is 𝑇 =
cos 𝜃. For 𝜃 = 𝜋

4 , we have the 50/50 beamsplitter. 𝜑 is the phase angle. The reflection amplitude is then 𝑟 = 𝑒𝑖𝜑 sin 𝜃,
and 𝜑 = 0 gives the 50/50 beamsplitter.

Now suppose we have a star whose coordinates on the sphere are written in terms of spherical coordinates 𝜃, 𝜑. If we
start in the Fock state of two oscillators | 10⟩, which corresponds to a single star at the North Pole, aka the |↑⟩ state,
then applying the beamsplitter 𝐵𝑆( 𝜃

2 , 𝜑) will rotate the star into the desired direction.

Let’s check it out with StrawberryFields!
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[3]: from spheres import *

import strawberryfields as sf
from strawberryfields.ops import *

star = qt.rand_ket(2)
theta, phi = spinor_sph(star)

prog = sf.Program(2)
with prog.context as q:

Fock(1) | q[0]
BSgate(theta/2, phi) | (q[0], q[1])

eng = sf.Engine("fock", backend_options={"cutoff_dim": 3})
state = eng.run(prog).state

print("qubit xyz: %s" % spinj_xyz(star))
print("oscillator xyz: %s" % spinj_xyz_strawberryfields(state))

qubit xyz: [-0.48754591 0.11075614 0.00566234]
oscillator xyz: [-0.48754591 0.11075614 0.00566234]

Here in order to calculate the 𝑋,𝑌, 𝑍 expectation values, we use a trick: refer to the notes on Gaussian Quantum
Mechanics for more information. In short:

The idea is to take the Pauli matrices (divided by 1
8 actually, for normalization), and first upgrade them to the form:

H =

(︂
𝑂 0
0 𝑂*

)︂
, where𝑂 is the Pauli matrix, so that we can represent them in the general form for Gaussian operators

(ignoring displacements):

𝐻 =
1

2
𝜉†H𝜉

Here 𝜉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂�0
�̂�1
...
�̂�†0
�̂�†1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a vector of annihilation and creation operators.

The action of 𝐻 can also be written:

𝑒𝑖𝐻𝜉𝑒−𝑖𝐻 = S𝜉

Where 𝑆 is a complex symplectic matrix: S = 𝑒−𝑖Ω𝑐H and Ω𝑐 =

(︂
𝐼𝑛 0
0 −𝐼𝑛

)︂
, the complex symplectic form. (And

actually, since we’re here only concerned with the Pauli matrices themselves, we don’t need to take the exponential.)
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𝑆 can be converted into a real symplectic matrix acting on a vector of position and momentum operators,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑄0

𝑄1

𝑄2

...
𝑃0

𝑃1

𝑃2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
via:

R = 𝐿S𝐿†

Where 𝐿 = 1√
2

(︂
𝐼𝑛 𝐼𝑛

−𝑖𝐼𝑛 𝑖𝐼𝑛

)︂
.

Once we have 𝑅, we can feed it into StrawberryField’s method state.poly_quad_expectations, which
calculates the expectation value for operators built out of position and momentum operators, to obtain ⟨�̂�⟩, ⟨𝑌 ⟩, ⟨𝑍⟩.
This is what the function sf_state_xyz does.

Okay, so we can load in a spin- 12 state. But how do we generalize this for any spin-𝑗?

The idea is we’re going to use 2𝑗 pairs of oscillators, one pair for each star. Each pair is going to begin in the | 10⟩
state, aka the spin- 12 |↑⟩ state, and we’ll use a beamsplitter on each pair to rotate them to point in the direction of one
of the 2j stars of the constellation.

Then we’ll pick one pair of oscillators to be special: this is the pair we’re going to load our spin-𝑗 state into. Let’s
call its modes 𝑎0 and 𝑎1. We’re going apply 50/50 beamsplitters to the first of each (other) pair and 𝑎0, and also 50/50
beamsplitters to the second of each (other) pair and 𝑎1. This combines the modes in an even-handed way. Then we’re
going to post-select on all the other modes (that is, all the modes except 𝑎0 and 𝑎1) having 0 photons. If none of those
other modes have any photons after going through the 50/50 beamsplitters, then all the photons must have ended up in
𝑎0 and 𝑎1, and indeed: we find that 𝑎0 and 𝑎1 are then in the desired state, encoding the spin-𝑗 constellation.

There’s no getting around the post-selection, which is analogous to the post-selection necessary in the symmetric
multiqubit circuit we discussed before. What’s nice in this case, however, is that the permutation symmetry itself is
handled automatically for us, so no need for all those controlled swaps!

As a tabletop experiment, it might look something like this:
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Depicted is a photonic preparation of a spin- 32 state. The state is determined (up to phase) by three stars given in
spherical coordinates by (𝜃0, 𝜑0), (𝜃1, 𝜑1), (𝜃2, 𝜑2). These values determine the parameters of the three beamsplitters
in blue along the diagonal: 𝐵𝑆( 𝜃0

2 , 𝜑0), 𝐵𝑆( 𝜃1
2 , 𝜑1), 𝐵𝑆( 𝜃2

2 , 𝜑2). On the other hand, the green beamsplitters are
50/50 beamsplitters: 𝐵𝑆(𝜋

4 , 0). Each pair of modes (𝑎0/𝑎1, 𝑎2/𝑎3, 𝑎4/𝑎5) starts off in the | 10⟩ state, and each pair
is sent through a corresponding beamsplitter to rotate in a star. Then all the even numbered modes (if you like) are
50/50’d with 𝑎0, and all the odd numbered modes are 50/50’d with 𝑎1. Then 𝑎2, 𝑎3, 𝑎4, 𝑎5 are all sent into photon
detectors, and we throw out the experiment unless all the photon counts are 0. Then the spin- 32 state given by the three
stars will be encoded in the two modes 𝑎0 and 𝑎1. One can then easily imagine the corresponding diagram for any
spin-𝑗: just add more blue beamsplitters corresponding to stars along the diagonal, etc.

In StrawberryFields code:

[4]: from spheres import *
import strawberryfields as sf
from strawberryfields.ops import *

spin = qt.rand_ket(4)
sph = [np.array([theta_phi[0]/2, theta_phi[1]]) for theta_phi in spin_sph(spin)]

j = (spin.shape[0]-1)/2
n_modes = 2*int(2*j)
cutoff_dim = int(2*j+1)

prog = sf.Program(n_modes)
with prog.context as q:

(continues on next page)
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(continued from previous page)

for i in range(0, n_modes-1, 2):
Fock(1) | q[i]
theta, phi = sph[int(i/2)]
BSgate(theta, phi) | (q[i], q[i+1])

for i in range(2, n_modes-1, 2):
BSgate() | (q[0], q[i])
BSgate() | (q[1], q[i+1])

for i in range(2, n_modes):
MeasureFock(select=0) | q[i]

eng = sf.Engine("fock", backend_options={"cutoff_dim": cutoff_dim})
state = eng.run(prog).state

Let’s confirm that our expected spin axis is correct:

[5]: print("spin xyz: %s" % spinj_xyz(spin))
print("oscillator xyz: %s" % spinj_xyz_strawberryfields(state))

spin xyz: [-0.3972139 0.59242125 0.08100696]
oscillator xyz: [-0.3972139 0.59242125 0.08100696]

And that we get the correct probabilities:

[7]: print("correct probabilities:")
dirac(spin_osc(spin, cutoff_dim=cutoff_dim), probabilities=True)

print("\nsf probabilities:")
fock_probs = {}
for i in range(cutoff_dim):

for j in range(cutoff_dim):
fock_state = [i, j]+[0]*(n_modes-2)
fock_probs[(i, j)] = state.fock_prob(n=fock_state)
if fock_probs[(i, j)] != 0:

print("|%s%s>: %.3f" % (i, j, fock_probs[(i, j)]))

correct probabilities:
|03>: 0.132
|12>: 0.315
|21>: 0.393
|30>: 0.160

sf probabilities:
|03>: 0.132
|12>: 0.315
|21>: 0.393
|30>: 0.160

spheres.spin_circuits.strawberryfields provides the function spin_osc_strawberryfields(spin),
which takes a spin as input and returns the StrawberryField program above, as well as
spinj_xyz_strawberryfields(state, on_modes=[0,1]) which takes a StrawberryFields state
and a list of two modes for which to calculate the 𝑋 , 𝑌 , 𝑍 expectation values.

And there you have it! Now all you need is access to a real photonic quantum computer and the sky’s the limit.
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2.4 Majorana Stars and Structured Gaussian Beams

In this notebook, we’ll be exploring yet another fascinating application of our favorite construction: the “Majorana
stars.”

We know well how we can view constellations on the 2-sphere as SU(2) representations, in other words, as spin-j
states (up to phase). These states represent the intrinsic angular momentum of a massive particle. On the other hand,
massless particles also have a form of intrinsic angular momentum: polarization. Indeed, we’ve seen how we can use
the sphere to represent polarization states: a trick that was known even to Poincare.

To refresh your memory:

Given a qubit quantized along the 𝑍 axis, we can obtain the corresponding polarization ellipse simply by rotating the
overall phase of the state, and taking the real part of its two components. If we treat these two real numbers as (𝑥, 𝑦)
coordinates in the plane, they trace out the correct ellipse.

In this basis, 𝑍+/𝑍− correspond to horizontal/vertical polarization, 𝑋+/𝑋− correspond to diagonal/antidiagonal
polarization, and 𝑌+/𝑌− correspond to clockwise/counterclockwise circular polarization. Any arbitrary point on the
sphere, thus, corresponds to some ellipse in the plane.

In this case, we’d take the 𝑌 axis to coincide with the linear momentum axis of the massless particle, and consider
its polarization state to consist of a possible superposition of clockwise/counterclockwise states, which are sufficient
to describe any ellipse. We could imagine that this polarization state is telling us how the photon is “corkscrew-
ing”/oscillating in the plane orthogonal to its motion.

A photon is of course a spin-1 particle, but since it’s massless, it’s𝑚 = 0 state, which would correspond to longitudinal
polarization (in the direction of its motion), must be 0, and so it reduces down to a two state system. Don’t ask me for
the details!

Instead, let’s visualize this correspondence between the sphere and the ellipse:

[ ]: from spheres import *
import vpython as vp

qubit = basis(2, 0, 'z')
xyz = spinor_xyz(qubit)

scene = vp.canvas(background=vp.color.white)
vsphere = vp.sphere(pos=vp.vector(2,0,0), color=vp.color.blue, opacity=0.3)
varrow = vp.arrow(pos=vsphere.pos, axis=vp.vector(*xyz))

x, y = components(qubit).real
vpt = vp.sphere(pos=vp.vector(x,y,0), radius=0.1, color=vp.color.yellow, make_
→˓trail=True)

for t in np.linspace(0, 2*np.pi, 8000):
x, y = components(np.exp(1j*t)*qubit).real

(continues on next page)
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vpt.pos = vp.vector(x,y,0)
vp.rate(1000)

More geometrically:

On the other hand, it’s less well known, but one can interpret a full spin-1 state of two stars geometrically in terms
of polarization. According to Bliokh, Alonso, and Dennis (and Hannay): the unit vector which bisects the two stars
picks out a direction normal to a plane. Projecting the two points onto this plane, one obtains the two foci of the
polarization ellipse. In other words, a spin-1 state specifies an ellipse oriented in 3D. The direction normal to the plane
is taken to be the direction of propagation of the photon. In the degenerate case of the two stars in the same location,
we get circular polarization; and beautifully, the 𝑚 = 0 case, when two stars are opposite, never comes up, since the
polarization plane rotates along with them, and we get linearly polarized light instead.

(As the paper points out, however, this construction gets the size of ellipse wrong, and they suggest a slight variant as
a remedy.)
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So we have this correspondence between 𝑋,𝑌, 𝑍 directions on the sphere and diagonal/antidiagonal, clock-
wise/counterclockwise, horizontal/vertical polarization states in the plane.

This manifests as well in the oscillator representation. As we’ve seen, we can “second quantize” a qubit, introducing
a quantum harmonic oscillator to each of its two basis states |↑⟩ and |↓⟩, and interpret the resulting Fock space in
terms of a “tower” of spin states of all possible 𝑗 values. To wit, the | 00⟩ state of the two oscillators corresponds
to a spin-0 state, the | 10⟩ and | 01⟩ oscillator states correspond to the two states of a spin- 12 , the | 20⟩, | 11⟩, | 02⟩
states correspond to the three states of a spin-1, and so on. By a standard construction, we can second quantize qubit
operators to act on the whole Fock space, obtaining second quantized versions of the Pauli matrices, which are block
diagonal, and generate simultaneous rotations in each of the spin sectors.

If, however, we consider the position wavefunctions of the two oscillators, which is the same thing as the position
wavefunction of a single 2D oscillator in the plane, then we notice something interesting. 𝑋 eigenstates correspond to
diagonally/antidiagonally symmetric position states, 𝑌 eigenstates correspond to circularly symmetric position states,
and 𝑍 eigenstates correspond to horizontally/vertically symmetric position states.

Below, we look at a random state of the two oscillators and make a spin measurement. Above, you see the tower of
spin states from 0, 12 , 1, . . .; and below, a plane where the amplitudes for the positions are depicted as black arrows.
They are discretized because we’ve truncated the Fock space. The yellow dot represented the expected position of the
2D quantum oscillator. Try it for 𝑋 , 𝑌 , and 𝑍!

[ ]: from spheres import *

scene = vp.canvas(background=vp.color.white)
s = SchwingerSpheres(state=vacuum(cutoff_dim=5), scene=scene, show_plane=True)
s.random(); s.measure('y')

Does this have a physical interpretation? Certainly, if you want to analyze a 2D quantum oscillator, it might be useful
to exploit this “stellar decomposition.” But are we still talking about polarization, or what?

It turns out that the correct interpretation isn’t in terms of the polarization of light–in other words, its intrinsic an-
gular momentum–but in terms of the *orbital* angular momentum of light, its extrinsic angular momentum–with an
interesting twist, as we’ll see!

We’re perhaps more familiar with the case for a massive particle, which has both a spin and orbital angular momentum.
The latter given by 𝐿 = 𝑄× 𝑃 or:

𝐿𝑥 = 𝑄𝑦𝑃𝑧 −𝑄𝑧𝑃𝑦

𝐿𝑦 = 𝑄𝑧𝑃𝑥 −𝑄𝑥𝑃𝑧

𝐿𝑧 = 𝑄𝑥𝑃𝑦 −𝑄𝑦𝑃𝑥

Here the 𝑄’s and 𝑃 ’s are the position and momentum operators. The total angular momentum is the sum of the spin
and orbital parts.

Well, the same goes for light! On the one hand, if a light beam is cylindrically symmetric, and one choses the origin
at the beam axis, then the orbital angular momentum will be 0. On the other hand, one can consider helical modes of
light, such that the beam’s wavefront is corkscrewing around an “optical vortex” at the center.
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One imagines polarization itself as a kind of corkscrewing, but this is actually a second level kind of corkscrewing.
Consider this image:

The idea is we’re considering a spatial cross section of a beam, such that the polarization state actually varies across
it! In other words, the polarization is a property of “each point” as it were, each photon, but the OAM is a property of
the overall beam. This is a great reference.

Today we’ll be considering “structured Gaussian beams.” They are solutions to the “paraxial wave equation,” in other
words, the regime of something like a laser, where pretty much everything that’s going on is going on close to the
axis of propagation (the small angle apparoximation). Structured Gaussian beams are “self-similar,” in that their
cross-sections all look the same up to scaling. The structured part is going to make things interesting!

Following Bassa and Konrad, we can turn Maxwell’s equations into scalar wave equations for each component of the
electric and magnetic fields:

∇2Ψ − 1

𝑣2
𝜕2

𝜕𝑡2
Ψ = 0

Ψ is going to be a complex valued function, assigning “amplitudes” to each point in space and time, whose complex
phase corresponds to the phase of the EM wave, and whose amplitude squared corresponds to the intensity.

We want to consider a laser beam heading in one direction, monochromatic, whose transverse beam profile 𝑢(𝑥, 𝑦, 𝑧)
varies slowly as it zips along in the z direction (the longitudinal direction).

First, we can separate out the time part Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡, where 𝜔 is the angular frequency. Thus the
spatial part 𝑢(𝑥, 𝑦, 𝑧) must satisfy:

∇2𝑢(𝑥, 𝑦, 𝑧) + 𝑘2𝑢(𝑥, 𝑦, 𝑧) = 0

Since the wave number 𝑘 = 𝜔
𝑣 .

Now we engage in some simplification. We want 𝑢(𝑥, 𝑦, 𝑧) to have the form:

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦, 𝑧)𝑒𝑖𝑘𝑧

Which will account for the wave oscillation along the propagation direction.

Plugging in (and expanding out the ∇2) we obtain:

𝜕2𝑢0
𝜕𝑥2

+
𝜕2𝑢0
𝜕𝑦2

+
𝜕2𝑢0
𝜕𝑧2

+ 2𝑖𝑘
𝜕𝑢0
𝑑𝑧

= 0

To obtain the paraxial approximation we consider 𝑢0 to vary slowly with 𝑧 (leading to a slow decrease in amplitude as
the wave propagates), and thus drop the 𝜕2𝑢0

𝜕𝑧2 term, obtaining:

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝑢0(𝑥, 𝑦, 𝑧) = −2𝑖𝑘

𝜕

𝜕𝑧
𝑢0(𝑥, 𝑦, 𝑧)
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Looking at this equation, it might occur to you that it looks exactly like the Schrodinger equation for a two dimensional
free particle! Only the 𝑧 coordinate is playing the role of time! (And the wave number is acting like Planck’s constant!)

We’re just talking about a classical EM wave, and yet here we find a quantum equation staring us in the face.

Solutions to this equation can be interpreted in both a classical and a quantum sense, and one thing that means is that
we can use all of our quantum mechanical machinery to deal with this classical “wavefunction.”

Indeed, we could consider the two dimensional quantum harmonic oscillator, as we did originally, and consider all of
its energy states: they form a complete basis for wavefunctions on the plane. And so in principle, we could decompose
our classical light beam in terms of the basis states of the quantum 2D oscillator.

And because of that, we’ll be able to associate to the beam a set of Majorana constellations.

Indeed, we can employ the whole formalism of creation and annihilation operators, and so forth. And in fact, for
structured Gaussian beams specifically, the 2D quantum harmonic oscillator Hamiltonian will describe the propagation
of the beam: the z-axis will play the role of time.

Of course, to actually consider a quantum light beam, we’d have to second quantize: for each mode into which we’ve
decomposed the beam, we’d have to introduce a quantum harmonic oscillator to counts the number of photons in that
mode, and so on, and so forth.

But I want to emphasize the bizarre classical/quantum incest that’s going on here. We can represent the classical
light beam as a “state vector”, whose cross sections will be the transverse beam profile of the electric field (which
is measurable)–but this is different from the wavefunction of a photon in that mode! In the first case, the amplitude
squared of the wavefunction represents the intensity of the electric field, whereas in the second case the amplitude
squared represents the probability for finding a photon in that state.

The simplest solution to the paraxial Maxwell’s equations is the Gaussian beam.

Here, 𝐴 is some normalization.

𝑤0 is the “waist radius” or “beam waist”, which measures the size of the beam at the point of focus 𝑧 = 0, and 𝑤(𝑧)
is the beam width.

𝑅(𝑧) = 𝑧(1 + ( 𝑧𝑅
𝑧 )2) is the the radius of curvature of the beam’s wavefronts.

𝑧𝑅 is the “Rayleigh distance”: 𝜋𝑤2
0𝑛
𝜆 , where 𝜆 is the wavelength and 𝑛 is the index of refraction.

𝜑(𝑧) = arctan( 𝑧
𝑧𝑅

) is the Gouy phase, which has a great name!

This picture from wikipedia is illuminating:
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The intensity profile, or cross section of the beam, at its point of focus, would look like:

In either direction along the direction of propagation, it would look the same, only slowly increasing in size.

So that’s the simplest case!

We now turn to structured Gaussian beams.

Given what I said earlier, and knowing that the energy states of the quantum harmonic oscillator can be written in terms
of the Hermite polynomials, it would make sense if we could decompose our classical light beam into the so-called
Hermite-Gaussian modes, which essentially consist in two Hermite polynomials in x and y multiplied by a Gaussian.
Shamelessly ripped from wikipedia:
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Here 𝐸0 hides the normalization and 𝜓(𝑧) = (𝑁+1) arctan( 𝑧
𝑧𝑅

), the Gouy phase. 𝑁 = 𝑙+𝑚, where 𝑙 and𝑚 denote
which Hermite polynomials we’re using.

Okay. But morally speaking, it’s just a 2D quantum harmonic oscillator state energy state with some bells and whistles.

Compare the wavefunction for a 1D quantum harmonic oscillator energy state:

The difference is that we’ve got this 𝑤0

𝑤(𝑧) term at the front, we’re dividing things by (powers of) 𝑤(𝑧), and we have
these phase terms. The effect is to make sure we’re describing a beam.

In what follows, however, we’ll be following this reference, and so use instead the Laguerre-Gaussian modes, which
are closely related.

We’ll see that the Hermite-Gaussian modes have horizontal/vertical symmetries in the plane, while the Laguerre-
Gaussian modes have circular symmetries. And in fact, by using 𝑋,𝑌, 𝑍 rotations, we’ll be able to rotate Hermite-
Gaussian modes into Laguerre-Gaussian modes, and vice versa, and even get modes that are in between (Hermite-
Laguerre-Gaussian modes). It will be just the same correspondence that we saw before in the relationship between the
sphere of a qubit and the polarization ellipse.

The Laguerre-Gauss modes are given by:

Here r is understood as (𝑟, 𝜑, 𝑤): we’re working in cylindrical coordinates, where 𝑤 is 𝑤(𝑧) from above. The index
𝑁 takes integer values and 𝑙 runs from −𝑁 to 𝑁 in steps of two. They parameterize the generalized Laguerre
polynomials. We have some normalization, some phase terms, and a Gaussian falloff.

The upshot is that any structured Gaussian beam of total order 𝑁 can be decomposed in terms of LG modes as:

| 𝐵⟩ =
∑︁
𝑙

𝑐𝑙 | 𝑁, 𝑙⟩

In honor of the classical/quantum crossover, we’ve employed the Dirac notation.

So for 𝑁 = 3, say, we’d have states for 𝑙 = −3,−1, 1, 3.

Finally, we simply associate these states with the | 𝑗,𝑚⟩ states of a spin-𝑁2 particle, dividing 𝑁 and 𝑙 by 2 to get the 𝑗
and 𝑚 values. And from the spin state, we have our stars. Easy as pie!

| 3,−3⟩ →| 3

2
,−3

2
⟩
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| 3,−1⟩ →| 3

2
,−1

2
⟩

| 3, 1⟩ →| 3

2
,

1

2
⟩

| 3, 3⟩ →| 3

2
,

3

2
⟩

We can then describe a structured Gaussian beam of any order as a tower of spin states aka a spin in a superposition
of 𝑗 values, just as we’ve been doing.

Alright, enough talk, let’s see it in action!

First, let’s define our LG modes. Luckily, scipy can help us with our generalized Laguerre polynomials.

[3]: from math import factorial
from numpy import sqrt, pi, exp, abs, angle
from scipy.special import eval_genlaguerre

def laguerre_gauss_mode(N, l, coordinates="cartesian"):
"""
N is an integer.
l runs from -N to N in steps of 2.
"""
def mode(r, phi, z): # cylindrical coordinates

w0 = 1 # waist radius
n = 1 # index of refraction
lmbda = 1 # wavelength
zR = (pi*n*(w0**2))/lmbda # rayleigh range
w = w0*sqrt(1+(z/zR)**2) # spot size parameter
return \

((1j**(abs(l)-N))/w)*\
sqrt(((2**(abs(l)+1))*factorial((N-abs(l))/2))/\

(pi*factorial((N+abs(l))/2)))*\
exp(-(r**2)/w**2)*\
((r/w)**abs(l))*\
exp(1j*l*phi)*\
eval_genlaguerre((N-abs(l))/2, abs(l), (2*r**2)/w**2)

if coordinates == "cylindrical":
return mode

elif coordinates == "cartesian":
def cartesian(x, y, z):

c = x+1j*y
r, phi = abs(c), angle(c)
return mode(r, phi, z)

return cartesian

Now we need a way to visualize them. The LG modes give us a complex value for each cylindrical coordinate. We’ll
be visualizing them in the standard way in the plane, where color will correspond to the phase, and brightness to the
magnitude.

[4]: import numpy as np
import matplotlib.pyplot as plt
from colorsys import hls_to_rgb

# Adapted from:
# https://stackoverflow.com/questions/17044052/mathplotlib-imshow-complex-2d-array
def colorize(z):

n,m = z.shape
c = np.zeros((n,m,3))

(continues on next page)
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(continued from previous page)

c[np.isinf(z)] = (1.0, 1.0, 1.0)
c[np.isnan(z)] = (0.5, 0.5, 0.5)
idx = ~(np.isinf(z) + np.isnan(z))
A = (np.angle(z[idx]) + np.pi) / (2*np.pi)
A = (A + 0.5) % 1.0
B = 1.0 - 1.0/(1.0+abs(z[idx]))
c[idx] = [hls_to_rgb(a, b, 1) for a,b in zip(A,B)]
return c

def viz_beam(beam, size=3.5, n_samples=100):
x = np.linspace(-size, size, n_samples)
y = np.linspace(-size, size, n_samples)
X, Y = np.meshgrid(x, y)
plt.imshow(colorize(beam(X, Y, np.zeros(X.shape))), interpolation="none",

→˓extent=(-size,size,-size,size))
plt.show()

First, let’s check out 𝑁 = 0, 𝑙 = 0. That just corresponds to a Gaussian beam. No funky business.

[5]: viz_beam(laguerre_gauss_mode(0,0))

Modes 𝑁 = 1, 𝑙 = −1, 1 correspond to a corkscrewing beam with a optical vortex in the center.

[6]: viz_beam(laguerre_gauss_mode(1,-1))
viz_beam(laguerre_gauss_mode(1,1))
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Modes 𝑁 = 2, 𝑙 = −2, 0, 2:

[7]: viz_beam(laguerre_gauss_mode(2,-2))
viz_beam(laguerre_gauss_mode(2,0))
viz_beam(laguerre_gauss_mode(2,2))
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Modes 𝑁 = 3, 𝑙 = −3,−1, 1, 3:

[8]: viz_beam(laguerre_gauss_mode(3,-3))
viz_beam(laguerre_gauss_mode(3,-1))
viz_beam(laguerre_gauss_mode(3,1))
viz_beam(laguerre_gauss_mode(3,3))
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We can see that the LG modes are basically going to give us concentric rings.

Now let’s incorporate the stars. Given a spin state, we’ll associate its | 𝑗,𝑚⟩ components to LG modes, and package
up the sum as a single python function. Then we’ll evaluate it–and visualize the constellation as well.

[9]: from spheres import *
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def spin_beam(spin, coordinates="cartesian"):
j = (spin.shape[0]-1)/2
v = components(spin)
lg_basis = [laguerre_gauss_mode(int(2*j), int(2*m), coordinates=coordinates) for

→˓m in np.arange(-j, j+1)]
if coordinates == "cartesian":

def beam(x, y, z):
return sum([v[int(m+j)]*lg_basis[int(m+j)](x, y, z) for m in np.arange(-j,

→˓ j+1)])
return beam

elif coordinates == "cylindrical":
def beam(r, phi, z):

return sum([v[int(m+j)]*lg_basis[int(m+j)](r, phi, z) for m in np.arange(-
→˓j, j+1)])

return beam

def viz_spin_beam(spin, size=3.5, n_samples=200):
stars = spin_xyz(spin)
beam = spin_beam(spin)
fig = plt.figure(figsize=plt.figaspect(0.5))

bloch_ax = fig.add_subplot(1, 2, 1, projection='3d')
sphere = qt.Bloch(fig=fig, axes=bloch_ax)
if spin.shape[0] != 1:

sphere.point_size=[300]*(spin.shape[0]-1)
sphere.add_points(stars.T)
sphere.add_vectors(stars)

sphere.make_sphere()

beam_ax = fig.add_subplot(1, 2, 2)
x = np.linspace(-size, size, n_samples)

(continues on next page)
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y = np.linspace(-size, size, n_samples)
X, Y = np.meshgrid(x, y)
beam_ax.imshow(colorize(beam(X, Y, np.zeros(X.shape))), interpolation="none",

→˓extent=(-size,size,-size,size))

plt.show()

As a test, let’s make sure we can reproduce this image from the paper:

They start with a spin coherent state at 𝜑 = 𝜋
2 , 𝜃 = 𝜋

2 in spherical coordiantes, for 𝑗 = 3. This means 6 stars at that
point on the sphere.

[10]: star = sph_xyz([np.pi/4, np.pi/4])
spin = xyz_spin([star, star, star, star, star, star])
beam = spin_beam(spin)

viz_beam(beam, size=3.5, n_samples=200)
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Looks good, up to our choice of coloring scheme! So then they consider the spin state with 5 stars at that point, and
1 star in the opposite direction–and then 2 stars in the opposite direction, and so on. (All of which together form a
| 𝑗,𝑚⟩ basis set, quantized along this particular axis).

[11]: star = sph_xyz([np.pi/4, np.pi/4])
spin = xyz_spin([-star, star, star, star, star, star])
beam = spin_beam(spin)

viz_beam(beam, size=3.5, n_samples=200)

[12]: star = sph_xyz([np.pi/4, np.pi/4])
spin = xyz_spin([-star, -star, star, star, star, star])
beam = spin_beam(spin)

viz_beam(beam, size=3.5, n_samples=200)
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[13]: star = sph_xyz([np.pi/4, np.pi/4])
spin = xyz_spin([-star, -star, -star, star, star, star])
beam = spin_beam(spin)

viz_beam(beam, size=3.5, n_samples=200)

Looks good to me!

Now let’s check out 𝑋,𝑌, 𝑍 eigenstates for different 𝑗 values.

[14]: # j = 1/2
viz_beam(spin_beam(basis(2,0,'x')))
viz_beam(spin_beam(basis(2,1,'x')))
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[15]: # j = 1/2
viz_beam(spin_beam(basis(2,0,'y')))
viz_beam(spin_beam(basis(2,1,'y')))
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[16]: # j = 1/2
viz_beam(spin_beam(basis(2,0,'z')))
viz_beam(spin_beam(basis(2,1,'z')))

So: we’re getting horizontally/vertically symmetric states, diagonal/antidiagonal symmetric states, and circularly sym-
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metric states!

Of course, the convention is a little different from the one we started out with, when we were considering the relation-
ship between a qubit and polarization. Back then, 𝑋 corresponded to 𝐷/𝐴, 𝑌 to 𝑅/𝐿, and 𝑍 to 𝐻/𝑉 . Here we have
𝑋 corresponding to 𝐻/𝑉 , 𝑌 to 𝐷/𝐴 and 𝑍 to 𝑅/𝐿. But again, it’s just a convention.

The point is that in this construction, 𝑍 eigenstates correspond to Laguerre-Gauss modes: the circularly symmetric
ones. 𝑋 eigenstates correspond to Hermite-Gauss modes: horizontal/vertically symmetric ones. And so, as promised
the Laguerre/Hermite distinction is just a rotation away!

Let’s check out 𝑗 = 1:

[17]: # j = 1
viz_beam(spin_beam(basis(3,0,'x')))
viz_beam(spin_beam(basis(3,1,'x')))
viz_beam(spin_beam(basis(3,2,'x')))
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[18]: # j = 1
viz_beam(spin_beam(basis(3,0,'y')))
viz_beam(spin_beam(basis(3,1,'y')))
viz_beam(spin_beam(basis(3,2,'y')))
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[19]: # j = 1
viz_beam(spin_beam(basis(3,0,'z')))
viz_beam(spin_beam(basis(3,1,'z')))
viz_beam(spin_beam(basis(3,2,'z')))
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And for 𝑗 = 3
2 . Also, for comparison, an actual picture, grainy due to the quantum nature of the photons:

[20]: # j = 3/2

(continues on next page)
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viz_beam(spin_beam(basis(4,0,'x')))
viz_beam(spin_beam(basis(4,1,'x')))
viz_beam(spin_beam(basis(4,2,'x')))
viz_beam(spin_beam(basis(4,3,'x')))

116 Chapter 2. spheres



spheres, Release 0.3.0.9

[21]: # j = 3/2
viz_beam(spin_beam(basis(4,0,'y')))
viz_beam(spin_beam(basis(4,1,'y')))
viz_beam(spin_beam(basis(4,2,'y')))
viz_beam(spin_beam(basis(4,3,'y')))
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[22]: # j = 3/2
viz_beam(spin_beam(basis(4,0,'z')))
viz_beam(spin_beam(basis(4,1,'z')))
viz_beam(spin_beam(basis(4,2,'z')))

(continues on next page)
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viz_beam(spin_beam(basis(4,3,'z')))
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And then, of course, we can consider arbitrary constellations:

[23]: viz_spin_beam(qt.rand_ket(2))
viz_spin_beam(qt.rand_ket(3))
viz_spin_beam(qt.rand_ket(4))
viz_spin_beam(qt.rand_ket(5))
viz_spin_beam(qt.rand_ket(6))
viz_spin_beam(qt.rand_ket(7))
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Finally, let’s see them in motion! Given a spin and a Hamiltonian, the code below will evolve the spin bit by bit,
calculating the associated SG beam each step of the way, and visualize everything as an animation.

[24]: import matplotlib.animation as animation

def animate_spin_beam(spin, H, dt=0.1, T=2*np.pi, size=3.5, n_samples=200,
→˓filename=None, fps=20):

fig = plt.figure(figsize=plt.figaspect(0.5))

bloch_ax = fig.add_subplot(1, 2, 1, projection='3d')
sphere = qt.Bloch(fig=fig, axes=bloch_ax)
sphere.point_size=[300]*(spin.shape[0]-1)
sphere.make_sphere()

beam_ax = fig.add_subplot(1, 2, 2)
x = np.linspace(-size, size, n_samples)
y = np.linspace(-size, size, n_samples)
X, Y = np.meshgrid(x, y)
Z = np.zeros(X.shape)

U = (-1j*H*dt).expm()
sphere_history = []
beam_history = []
steps = int(T/dt)

(continues on next page)

122 Chapter 2. spheres



spheres, Release 0.3.0.9

(continued from previous page)

for t in range(steps):
if spin.shape[0] != 1:

sphere_history.append(spin_xyz(spin))
beam = spin_beam(spin)
beam_history.append(beam(X, Y, Z))
spin = U*spin

sphere.make_sphere()
im = beam_ax.imshow(colorize(beam_history[0]), interpolation="none", extent=(-

→˓size,size,-size,size))

def animate(t):
if spin.shape[0] != 1:

sphere.clear()
sphere.add_points(sphere_history[t].T)
sphere.add_vectors(sphere_history[t])
sphere.make_sphere()

im.set_array(colorize(beam_history[t]))
return [bloch_ax, im]

ani = animation.FuncAnimation(fig, animate, range(steps), repeat=False)
if filename:

ani.save(filename, fps=fps)
return ani

Check out the beam vids: I’ve pre-generated animations systematically for spins of different 𝑗 value, visualizing both
the stars and the beam profile for:

• All X/Y/Z eigenstates, and how they transform under X/Y/Z rotations, as well as phase evolution (2D oscillator
hamiltonian).

• How a random constellation transforms under X/Y/Z rotations.

• How a constellation whose stars should approximate a regular polyhedron transforms under X/Y/Z rotations (we
allow randomly chosen stars to repel each other for a while until they settle into a nicely regular configuration).

• How a random constellation transforms under a random Hamiltonian.

Plus, some extra vids for fun.

To conclude. You might be wondering about the applications of structured Gaussian beams.

Well, from what I’ve heard: structured Gaussian beams can be used as “optical tweezers” to manipulate macroscopic
particles, tweezing them into some desired location; they can be used to “write optical waveguides into atomic vapors”;
to produce atomic traps, where atoms get attracted to regions of maximum or minimum light intensity; to make better
telescopes; to increase the bandwidth of communication channels, e.g., using “twisted radio beams,” c.f. “orbital
angular momentum multiplexing”; as qudits in photonic quantum computation; and much more.

How to make them? Often one starts with a Gaussian beam, and there are various techniques to give the beam a
“twist”– see the links for more information!

Finally, a little philosophy. It’s clear that structured Gaussian beams have some practical value, and naturally they’re
of natural interest to us insofar as they represent yet another use of the Majorana stars. But I think most importantly,
they show how tricky it is to cleanly separate the “classical” from the “quantum”– the two are always locked in an
endless embrace.

Already, the Majorana stars formalism itself rides the border between classical and quantum in an interesting way.
Essentially, one represents quantum spin-𝑗 states in terms of 2𝑗 copies of the classical phase space of a spinning
object. Moreover, thinking in terms of the “coherent state wavefunction,” we’re representing a spin state in terms of a
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set of the “most classical states” it isn’t. Moreover, the dynamics of a spin system can be reinterpreted as a classical
evolution between particles (the stars) confined to the surface of the sphere, experiencing n-body forces whose weights
depend on the particular Hamiltonian.

But now we’re taking this to the next level! Spin states can be embedded in the larger context of the 2D quantum
harmonic oscillator, whose energy states miraculously correspond to the classical states of a light beam, so that now
the Majorana constellations are picking out classical light beam states, which after second quantization, correspond to
modes in which one can find fully quantum photons with some probability.

Indeed, one might even say that a quantum structured Gaussian light beam could be regarded as the “third quantization”
of a qubit:

We start with a classical spinning object and first quantize it into a qubit. Then we second quantize the qubit to get
all the higher representations of SU(2), which correspond to nothing more than copies of the original classical phase
space, in terms of the 2D quantum harmonic oscillator. But these quantum states also correspond to classical solutions
of the paraxial Maxwell’s equations for a light beam. And so we quantize a third time, introducing a harmonic
oscillator to each of those modes, which count the number of photons in those states, and end up with a fully quantum
beam. . .

It really makes you wonder: Could the states of the quantum beam correspond to the states of yet another classical
system, allowing us to fourth quantize, and so on. . . One can dream. Ironically: in the progression, we start with
a sphere (spin), then we end up on the plane (2D quantum harmonic oscillator), and finally, we end up with an
(approximately) 1 dimensional beam. Maybe we should look for something 0 dimensional next! Food for thought!

2.4.1 References:

Modal Majorana sphere and hidden symmetries of structured-Gaussian beams

Gaussian Beams

Representation of the quantum and classical states of light carrying orbital angular momentum

Quantum metrology at the limit with extremal Majorana constellations

Swings and roundabouts: Optical Poincare spheres for polarization and Gaussian beams

Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects

Generalized Gaussian beams in terms of Jones vectors

https://en.wikipedia.org/wiki/Gaussian_beam

https://en.wikipedia.org/wiki/Orbital_angular_momentum_of_light

https://en.wikipedia.org/wiki/Optical_vortex

http://www.nhn.ou.edu/~abe/research/lgbeams/

2.5 Generalizing the Majorana Representation for Mixed States and
Operators

So one of the biggest limitations of the Majorana representation for spin is that it only works for pure states. But what
happens if we want to deal with mixed states (or operators more generally)? Is there some natural generalization, also
in terms of constellations that transform nicely under rotations?

Leboeuf in his “Phase space approach to quantum dynamics,” suggests one avenue. We know that we can write the
Majorana polynomial for a single spin as 𝑓(𝑧) = ⟨𝑧 | 𝜓⟩ where 𝑧 is the point antipodal to 𝑧 on the sphere. For two
spins, we could consider the two variable polynomial:
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𝑓(𝑧0, 𝑧1) = ⟨𝑧0𝑧1 | 𝜓⟩ =
∑︀𝑗0

𝑚0=−𝑗0

∑︀𝑗1
𝑚1=−𝑗1

𝑐𝑚0,𝑚1𝑧
𝑗0−𝑚0

0 𝑧𝑗1−𝑚1

1

And then consider “cross-sections” like:

𝑠𝑚1
(𝑧0) =

∑︀𝑗0
𝑚0=−𝑗0

𝑐𝑚0,𝑚1
𝑧𝑗0−𝑚0

0

for each value of 𝑚1. There will be 2𝑗1 + 1 such functions and each will have 2𝑗0 zeros. This set of (2𝑗1 + 1) × 2𝑗0
zeros completely determines the quantum state of the two spins. In other words, given two spins 𝐴 and 𝐵, we can
consider each of the 𝑚 values of 𝐵, and get a set of constellations describing 𝐴, one for each 𝑚 value of 𝐵 (and vice
versa).

But that’s not entirely satisfying, and we can do better. In what follows, we rely on the very nice recent paper
“Majorana representation for mixed states,” where they employ the “Ramachandran-Ravishankar representation” aka
the “T-rep”.

The basic tool is a set of tensor operators for a given 𝑗 value: {𝑇 𝑗
𝜎,𝜇}𝜎𝜇=−𝜎 : these are sets of matrices which transform

nicely under 𝑆𝑈(2), and are the matrix analogue of the spherical harmonics 𝑌𝑙𝑚(𝜃, 𝜑) which span the space of real
valued functions on the sphere.

They are defined by:

𝑇 𝑗
𝜎,𝜇 =

∑︀𝑗
𝑚,𝑚′=−𝑗(−1)𝑗−𝑚′

𝐶𝜎,𝜇
𝑗,𝑚;𝑗,−𝑚′ | 𝑗,𝑚⟩⟨𝑗,𝑚′ |

For a given value of 𝑗, 𝜎 ranges from 0 to 2𝑗, and 𝜇 from −𝜎 to 𝜎. The 𝐶 refers to the Clebsch-Gordan coefficient
𝐶𝑗,𝑚

𝑗1,𝑚1;𝑗2,𝑚2
.

Recall the latter’s meaning in terms of angular momentum coupling theory. We have:

| 𝑗,𝑚⟩ =
∑︀𝑗1

𝑚1=−𝑗1

∑︀𝑗2
𝑚2=−𝑗2

| 𝑗1,𝑚1; 𝑗2,𝑚2⟩⟨𝑗1,𝑚1; 𝑗2,𝑚2 | 𝑗,𝑚⟩

Then: 𝐶𝑗,𝑚
𝑗1,𝑚1;𝑗2,𝑚2

= ⟨𝑗1,𝑚1; 𝑗2,𝑚2 | 𝑗,𝑚⟩.

We’re imagining that we have the tensor product of two spins with 𝑗1 and 𝑗2, and we want to switch to the “coupled
basis” (in terms of eigenstates of the total angular momentum): the Clebsch-Gordan coefficients tell us how to do that.

In any case, for a given 𝑗 value, we can construct a collection of “spherical tensors”. There will be 2𝑗 sets of them (for
𝜎 from 0 to 2𝑗), each with 2𝜎 + 1 operators in a set.

[1]: from spheres import *

def spherical_tensor(j, sigma, mu):
terms = []
for m1 in np.arange(-j, j+1):

for m2 in np.arange(-j, j+1):
terms.append(\

((-1)**(j-m2))*\
qt.clebsch(j, j, sigma, m1, -m2, mu)*\
qt.spin_state(j, m1)*qt.spin_state(j, m2).dag())

return sum(terms)

def spherical_tensor_basis(j):
T_basis = {}
for sigma in np.arange(0, int(2*j+1)):

for mu in np.arange(-sigma, sigma+1):
T_basis[(sigma, mu)] = spherical_tensor(j, sigma, mu)

return T_basis

j = 3/2
T = spherical_tensor_basis(j)
for sigma_mu, O in T.items():

print("sigma: %d, mu: %d\n%s\n" % (sigma_mu[0], sigma_mu[1], O))
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<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

sigma: 0, mu: 0
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0.5 0. 0. 0. ]
[0. 0.5 0. 0. ]
[0. 0. 0.5 0. ]
[0. 0. 0. 0.5]]

sigma: 1, mu: -1
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[0. 0. 0. 0. ]
[0.54772256 0. 0. 0. ]
[0. 0.63245553 0. 0. ]
[0. 0. 0.54772256 0. ]]

sigma: 1, mu: 0
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[ 0.67082039 0. 0. 0. ]
[ 0. 0.2236068 0. 0. ]
[ 0. 0. -0.2236068 0. ]
[ 0. 0. 0. -0.67082039]]

sigma: 1, mu: 1
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0. -0.54772256 0. 0. ]
[ 0. 0. -0.63245553 0. ]
[ 0. 0. 0. -0.54772256]
[ 0. 0. 0. 0. ]]

sigma: 2, mu: -2
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[0. 0. 0. 0. ]
[0. 0. 0. 0. ]
[0.70710678 0. 0. 0. ]
[0. 0.70710678 0. 0. ]]

sigma: 2, mu: -1
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0. 0. 0. 0. ]
[ 0.70710678 0. 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0. -0.70710678 0. ]]

sigma: 2, mu: 0
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[ 0.5 0. 0. 0. ]
[ 0. -0.5 0. 0. ]
[ 0. 0. -0.5 0. ]

(continues on next page)
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[ 0. 0. 0. 0.5]]

sigma: 2, mu: 1
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0. -0.70710678 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0.70710678]
[ 0. 0. 0. 0. ]]

sigma: 2, mu: 2
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[0. 0. 0.70710678 0. ]
[0. 0. 0. 0.70710678]
[0. 0. 0. 0. ]
[0. 0. 0. 0. ]]

sigma: 3, mu: -3
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 0.]]

sigma: 3, mu: -2
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]
[ 0.70710678 0. 0. 0. ]
[ 0. -0.70710678 0. 0. ]]

sigma: 3, mu: -1
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0. 0. 0. 0. ]
[ 0.4472136 0. 0. 0. ]
[ 0. -0.77459667 0. 0. ]
[ 0. 0. 0.4472136 0. ]]

sigma: 3, mu: 0
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[ 0.2236068 0. 0. 0. ]
[ 0. -0.67082039 0. 0. ]
[ 0. 0. 0.67082039 0. ]
[ 0. 0. 0. -0.2236068 ]]

sigma: 3, mu: 1
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0. -0.4472136 0. 0. ]
[ 0. 0. 0.77459667 0. ]
[ 0. 0. 0. -0.4472136 ]
[ 0. 0. 0. 0. ]]

(continues on next page)
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sigma: 3, mu: 2
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0. 0. 0.70710678 0. ]
[ 0. 0. 0. -0.70710678]
[ 0. 0. 0. 0. ]
[ 0. 0. 0. 0. ]]

sigma: 3, mu: 3
Quantum object: dims = [[4], [4]], shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0. 0. 0. -1.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]

For a given 𝑗 value, corresponding to a 2𝑗+ 1 dimensional representation, these matrices span the set of all (2𝑗+ 1)×
(2𝑗 + 1) complex square matrices. And so, we decompose any operator (like a Hermitian density matrix) in terms of
them. The coefficients in this basis will be generally complex.

[2]: def operator_spherical_decomposition(O, T_basis=None):
j = (O.shape[0]-1)/2
if not T_basis:

T_basis = spherical_tensor_basis(j)
decomposition = {}
for sigma in np.arange(0, int(2*j+1)):

for mu in np.arange(-sigma, sigma+1):
decomposition[(sigma, mu)] = (O*T_basis[(sigma, mu)].dag()).tr()

return decomposition

O = qt.rand_dm(int(2*j+1))
coeffs = operator_spherical_decomposition(O, T_basis=T)
for sigma_mu, c in coeffs.items():

print("sigma: %d, mu: %d = %.3f + %.3f" % (sigma_mu[0], sigma_mu[1], c.real, c.
→˓imag))

sigma: 0, mu: 0 = 0.500 + 0.000
sigma: 1, mu: -1 = 0.019 + -0.042
sigma: 1, mu: 0 = -0.135 + 0.000
sigma: 1, mu: 1 = -0.019 + -0.042
sigma: 2, mu: -2 = 0.005 + 0.030
sigma: 2, mu: -1 = -0.080 + 0.051
sigma: 2, mu: 0 = 0.044 + 0.000
sigma: 2, mu: 1 = 0.080 + 0.051
sigma: 2, mu: 2 = 0.005 + -0.030
sigma: 3, mu: -3 = -0.006 + 0.036
sigma: 3, mu: -2 = 0.000 + -0.009
sigma: 3, mu: -1 = 0.054 + -0.021
sigma: 3, mu: 0 = -0.216 + 0.000
sigma: 3, mu: 1 = -0.054 + -0.021
sigma: 3, mu: 2 = 0.000 + 0.009
sigma: 3, mu: 3 = 0.006 + 0.036

Naturally, we can go in reverse and recover the operator in the standard basis.
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[3]: def spherical_decomposition_operator(decomposition, T_basis=None):
j = max([k[0] for k in decomposition.keys()])/2
if not T_basis:

T_basis = spherical_tensor_basis(j)
terms = []
for sigma in np.arange(0, int(2*j+1)):

for mu in np.arange(-sigma, sigma+1):
terms.append(decomposition[(sigma, mu)]*T_basis[(sigma, mu)])

return sum(terms)

O2 = spherical_decomposition_operator(coeffs, T_basis=T)
print("recovered operator? %s" % np.allclose(O,O2))

recovered operator? True

Looking at the decomposition, you might observe that it looks like a tower of spin states with integer values for 𝑗! We
have complex coefficients for | 0, 0⟩, complex coefficients for | 1,−1⟩, | 1, 0⟩, | 1, 1⟩, and so forth.

In other words, we could think about this decomposition as giving us a set of spins. Notice however that the spins
states are not normalized.

[4]: def spherical_decomposition_spins(decomposition):
max_j = max([k[0] for k in decomposition.keys()])
return [qt.Qobj(np.array([decomposition[(j, m)]\

for m in np.arange(j, -j-1, -1)]))\
for j in np.arange(0, max_j+1)]

spins = spherical_decomposition_spins(coeffs)

for spin in spins:
print(spin)
print("norm: %.3f\n" % spin.norm())

Quantum object: dims = [[1], [1]], shape = (1, 1), type = bra
Qobj data =
[[0.5]]
norm: 0.500

Quantum object: dims = [[3], [1]], shape = (3, 1), type = ket
Qobj data =
[[-0.01936039-0.04194487j]
[-0.13539501+0.j ]
[ 0.01936039-0.04194487j]]

norm: 0.150

Quantum object: dims = [[5], [1]], shape = (5, 1), type = ket
Qobj data =
[[ 0.00460639-0.02976287j]
[ 0.08016727+0.05084416j]
[ 0.0437252 +0.j ]
[-0.08016727+0.05084416j]
[ 0.00460639+0.02976287j]]

norm: 0.147

Quantum object: dims = [[7], [1]], shape = (7, 1), type = ket
Qobj data =
[[ 6.06155752e-03+0.03594286j]
[ 3.70347881e-06+0.00876762j]
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[-5.37232244e-02-0.0206838j ]
[-2.15727197e-01+0.j ]
[ 5.37232244e-02-0.0206838j ]
[ 3.70347881e-06-0.00876762j]
[-6.06155752e-03+0.03594286j]]

norm: 0.237

Naturally, each one of these spins states can be associated to a constellation, and in fact, under rotations of the operator,
each constellation in this decomposition rotates as expected. Insofar as the norms are not 1, we could imagine that the
radius of each constellation’s sphere is given by the norm. Moreover, in the normal Majorana representation, the phase
is thrown out: here, however, the relative phases between each constellation does matter, and has to be kept track of.

Now let’s look at what these constellations are actually like:

[5]: for spin in spins:
print(spin_xyz(spin))
print()

[[0 0 0]]

[[ 0.18212642 -0.39458236 -0.90063018]
[-0.18212642 0.39458236 0.90063018]]

[[-0.1231688 0.26507586 -0.95632852]
[ 0.82358651 -0.54967974 -0.13984791]
[-0.82358651 0.54967974 0.13984791]
[ 0.1231688 -0.26507586 0.95632852]]

[[-0.46595808 0.2707279 -0.84237134]
[ 0.22556578 -0.59001107 -0.77524642]
[ 0.5851247 0.19927765 -0.78607728]
[ 0.46595808 -0.2707279 0.84237134]
[-0.5851247 -0.19927765 0.78607728]
[-0.22556578 0.59001107 0.77524642]]

We note the important fact that: every star has an antipodal twin on the other side of the sphere. In other words, the
stars come in opposite pairs. This is true for any Hermitian matrix. For a unitary matrix, however, this won’t be true.

[6]: U = qt.rand_unitary(int(2*j+1))
for spin in operator_spins(U, T_basis=T):

print(spin_xyz(spin))
print()

[[0 0 0]]

[[ 0.98758665 -0.11585539 -0.10606663]
[-0.27613644 0.9143209 0.29625321]]

[[-0.34549435 0.36782828 -0.86332845]
[ 0.6397556 -0.51244146 -0.57281456]
[-0.60489787 0.56602643 0.56010056]
[ 0.18872943 -0.17551787 0.96621668]]

[[ 0.53098874 -0.25803617 -0.80713585]
[-0.81865014 -0.30552325 -0.48627924]

(continues on next page)
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[-0.33479785 0.93919581 -0.07629956]
[ 0.94633723 0.31718518 0.06196299]
[ 0.23035429 -0.84237714 0.48717312]
[-0.55268807 -0.15410631 0.81901596]]

Let’s consider a pure state density matrix and compare it to the usual Majorana representation of the pure state.

[7]: pure_state = qt.rand_ket(int(2*j+1))
pure_dm = pure_state*pure_state.dag()

print("pure state stars:")
print(spin_xyz(pure_state))

print("\npure dm stars:")
for spin in operator_spins(pure_dm, T_basis=T):

print(spin_xyz(spin))
print()

pure state stars:
[[-0.96223489 -0.02828809 -0.27074675]
[ 0.49301975 -0.73758066 -0.4614177 ]
[ 0.81000791 -0.00964708 0.58633959]]

pure dm stars:
[[0 0 0]]

[[ 0.25301207 -0.95455314 -0.15752207]
[-0.25301207 0.95455314 0.15752207]]

[[-0.68266881 0.50028548 -0.53261406]
[-0.85132814 -0.51275063 -0.11102786]
[ 0.85132814 0.51275063 0.11102786]
[ 0.68266881 -0.50028548 0.53261406]]

[[-0.81000791 0.00964708 -0.58633959]
[ 0.49301975 -0.73758066 -0.4614177 ]
[-0.96223489 -0.02828809 -0.27074675]
[-0.49301975 0.73758066 0.4614177 ]
[ 0.96223489 0.02828809 0.27074675]
[ 0.81000791 -0.00964708 0.58633959]]

Considering the final constellation in the list, we can see that indeed this spherical tensor representation naturally
generalizes the Majorana representation. The final constellation in the list with 6 stars corresponds to the 3 stars in the
original pure state Majorana constellation, along with the three points opposite to them. In fact, one could ditch half
the stars and still have a complete representation (as long as you remember to add them back in). The authors propose
doing precisely this as well as a nice, but slightly involved scheme for fixing the phases, which we shall leave to the
side.

And what significance we can ascribe to the other constellations in the decomposition, we shall see!

But first, let’s do some visualization.

[ ]: from spheres import *
scene = vp.canvas(background=vp.color.white)

(continues on next page)
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j = 3/2
spin = qt.rand_ket(int(2*j+1))
dm = spin*spin.dag()

msphere = MajoranaSphere(spin, radius=1/2, pos=vp.vector(-1,0,0), scene=scene)
osphere = OperatorSphere(dm, pos=vp.vector(1,0,0), scene=scene)

H = qt.jmat(j, 'y')
U = (-1j*H*0.01).expm()

for t in range(1000):
spin = U*spin
dm = U*dm*U.dag()
msphere.spin = spin
osphere.dm = dm
vp.rate(1000)

OperatorSphere allows one to visualize a mixed state or operator using the spherical tensor decomposition. You
see a series of concentric spheres whose radii are the norms of the spins, and the colors of the spheres/stars correspond
to the phase of the spin states. You can see that the constellation with the highest 𝑗 value contains the original Majorana
constellation (shown on the left), but also includes the antipodal points. And everything transforms nicely under and
𝑆𝑈(2) rotation. (And the label gives the value of the spin-0 sector).

We can look at the evolution of a density matrix under some random Hamiltonian. Notice that unlike in the case of
simple rotations, the radii of the spheres can change–but the antipodal symmetry is preserved. (It’s also interesting
to think about states which have antipodal symmetry as being “time reversal invariant,” insofar as the operator that
inverts the spheres is for spins the time-reversal operator.)

[ ]: from spheres import *
scene = vp.canvas(background=vp.color.white)

j = 3/2
dm = qt.rand_dm(int(2*j+1))
osphere = OperatorSphere(dm, scene=scene)

H = qt.rand_herm(int(2*j+1))
U = (-1j*H*0.01).expm()
osphere.evolve(H, dt=0.01, T=1000)

We can also evolve a random unitary operator. Notice that the antipodal symmetry is broken.

[ ]: from spheres import *
scene = vp.canvas(background=vp.color.white)

j = 3/2
U = qt.rand_unitary(int(2*j+1))
osphere = OperatorSphere(U, scene=scene)

H = qt.rand_herm(int(2*j+1))
U = (-1j*H*0.01).expm()
osphere.evolve(H, dt=0.01, T=1000)

Now here’s an interesting thing. Let’s take a spin state, convert it into a permutation symmetric multiqubit state, and
look at the partial traces. In other words, we can look at the partial state of a single one of these qubits, of two of
these qubits, three, etc. It doesn’t matter which qubits we choose to look at because of the permutation symmetry, and
moreover the partial states are themselves permutation symmetric, so we can convert those multiqubit density matrices
into spin density matrices.

132 Chapter 2. spheres



spheres, Release 0.3.0.9

[ ]: from spheres import *
scene = vp.canvas(background=vp.color.white)

j = 3/2
spin = qt.rand_ket(int(2*j+1))
sym = spin_sym(spin)

o = OperatorSphere(spin*spin.dag(), pos=vp.vector(-1,0,0), scene=scene)

for i in range(1, int(2*j)):
partial = sym.ptrace(range(i))
sym_map = spin_sym_map(i/2)
OperatorSphere(sym_map.dag()*partial*sym_map, pos=vp.vector(2*j-i,0,0),

→˓scene=scene)

If it isn’t visually obvious, let’s compare the coordinates of the constellations in each of the partial traces with the
coordinates of constellations in the overall state:

[14]: for i in range(1, int(2*j)):
print("ptrace %s" % list(range(i)))
partial = sym.ptrace(range(i))
sym_map = spin_sym_map(i/2)
partial_spin = sym_map.dag()*partial*sym_map
for s in operator_spins(partial_spin):

print("%s\n" % str(spin_xyz(s)))

print("full state:")
for s in operator_spins(spin*spin.dag()):

print(spin_xyz(s))
print()

ptrace [0]
[[0 0 0]]

[[ 0.32835324 0.62163863 -0.71116071]
[-0.32835324 -0.62163863 0.71116071]]

ptrace [0, 1]
[[0 0 0]]

[[ 0.32835324 0.62163863 -0.71116071]
[-0.32835324 -0.62163863 0.71116071]]

[[ 0.5884445 -0.40432899 -0.70017937]
[-0.25350994 0.93946215 -0.23052893]
[ 0.25350994 -0.93946215 0.23052893]
[-0.5884445 0.40432899 0.70017937]]

full state:
[[0 0 0]]

[[ 0.32835324 0.62163863 -0.71116071]
[-0.32835324 -0.62163863 0.71116071]]

[[ 0.5884445 -0.40432899 -0.70017937]
[-0.25350994 0.93946215 -0.23052893]
[ 0.25350994 -0.93946215 0.23052893]
[-0.5884445 0.40432899 0.70017937]]

(continues on next page)
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[[ 0.51627334 -0.75558622 -0.40317651]
[ 0.28301465 0.88758595 -0.36344724]
[ 0.49323214 -0.86951775 0.02570873]
[-0.28301465 -0.88758595 0.36344724]
[-0.49323214 0.86951775 -0.02570873]
[-0.51627334 0.75558622 0.40317651]]

In other words, we see a very interesting feature of this representation: the partial states of the permutation symmetric
qubits are already hidden inside the representation of the overall state! We get them all at once, “for free.”

And indeed, this allows us to read off entanglement-related information from the spherical representation itself. For
example, for three qubits, there are ultimately two different entanglement classes: GHZ-style entanglement and W-
style entanglement. States within these classes can be transformed into each other by local quantum operations, but
local operations can’t convert between the two classes.

The GHZ state is: 1√
2
(|↑↑↑⟩+ |↓↓↓⟩). Crucially, if we measure one of the subsystems , for example, determining it to

be ↑ or ↓, the other two subsystems will be steered to |↑↑⟩ or |↓↓⟩, which are separable states.

Now the GHZ state is permutation symmetric, and so we can convert it into a spin- 32 state. Let’s visualize it and its
partial traces.

[ ]: scene = vp.canvas(background=vp.color.white)
GHZsym = (bitstring_basis("111") + bitstring_basis("000"))/np.sqrt(2)
GHZspin = sym_spin(GHZsym)

OperatorSphere(GHZspin*GHZspin.dag(), pos=vp.vector(-1,0,0))
for i in range(1, 3):

partial = GHZsym.ptrace(range(i))
sym_map = spin_sym_map(i/2)
OperatorSphere(sym_map.dag()*partial*sym_map, pos=vp.vector(2*j-i,0,0),

→˓scene=scene)

The single qubit partial state is maximally mixed, and the two qubit partial trace has a single sphere.

On the other hand, we can consider the 𝑊 state: 1√
3
(|↑↑↓⟩+ |↑↓↑⟩+ |↓↑↑⟩). In terms of entanglement, unlike the

GHZ case, if one of the three qubits is lost, then the remaining two qubits will still be entangled.

The 𝑊 state is also permutation symmetric, and so we can visualize it similarly:

[ ]: scene = vp.canvas(background=vp.color.white)
Wsym = (bitstring_basis("100") + bitstring_basis("010") + bitstring_basis("001"))/np.
→˓sqrt(3)
Wspin = sym_spin(Wsym)

OperatorSphere(Wspin*Wspin.dag(), pos=vp.vector(-1,0,0))
for i in range(1, 3):

partial = Wsym.ptrace(range(i))
sym_map = spin_sym_map(i/2)
OperatorSphere(sym_map.dag()*partial*sym_map, pos=vp.vector(2*j-i,0,0),

→˓scene=scene)

We can see that the single qubit partial state is not maximally mixed, and that the two qubit partial state has two
spheres. And from this geometrical difference, we can read off the different entanglement properties of the𝐺𝐻𝑍 state
and the 𝑊 state: if we lose a qubit of the 𝐺𝐻𝑍 state, the remaining two qubits are not entangled; but if we lose a
qubit of the 𝑊 state, the remaining two qubits will be.
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This turns out to be the tip of a very interesting iceberg, the details of which we’ll have to save for another time, and
I refer you again to the excellent paper “Majorana representation for mixed states.” In short, a) in the pure state case,
one can relate tensor contraction on the multiqubit side to taking derivatives of the Majorana polynomial b) one can
describe a mixed state (or operator) in terms of a polynomial in four variables, so that partial tracing can be related
to taking derivatives with respect to these variables c) formulate things like the multiplication of operators and the
evaluation of expectation values in terms of differentiation–indeed, in the latter case, differentiation with respect to the
stars!

And more!

2.5.1 Bibliography

Phase space approach to quantum dynamics

Majorana representation for mixed states

Local Unitary Equivalent Classes of Symmetric N-Qubit Mixed States

Geometric Multiaxial Representation of N-qubit Mixed Symmetric Separable States

2.6 Stablization via Symmetrization

We’ve seen how we can implement the “symmetrized tensor product” of several qubits in terms of a quantum circuit:
depending on the number of qubits we want to symmetrize, we adjoint a number of auxilliary qubits, prepare them
in a special initial state, apply a sequence of controlled swaps on the auxilliaries and the original qubits, undo the
initialization, and postselect on the auxilliary qubits all being 0/ ↑. The key was that the algorithm requires post-
selection, and so is only successful part of the time. By preparing our original qubits in the directions provided by a
constellation of “Majorana stars”, we were thus able to prepare spin-𝑗 states in the guise of 2𝑗 symmetrized qubits.

But nothing limits us to symmetrizing qubits. In fact, we can apply the same algorithm to symmetrize quantum
systems consisting of several qubits: we simply repeat the controlled swaps on however many qubits comprise each
subsystem. In fact, this played a role in the motivation behind the paper which provided our symmetrization algorithm:
“Stabilization Of Quantum Computations by Symmetrization”.

The idea is the following: Suppose we have a quantum computer, and we’re worried about noise. Instead of just run-
ning our quantum circuit, we could run 𝑛 copies of the circuit in parallel, while periodically using the symmetrization
algorithm to project the 𝑛 copies as a whole into the permutation symmetric subspace. Suppose there were no errors:
then naturally, each copy of the circuit would be precisely the same, and symmetrizing across them would have no
effect. But if there are some errors that asymmetrically affect the different copies, then it’s possible that projecting
the copies into the permutation symmetric subspace will project off these errors! Indeed, the permutation symmetric
subspace “is the smallest subspace containing all possible error-free states. It thus corresponds to the ‘most probing’
test we can legitimately apply, which will be passed by all error-free states,” since we can’t just do any probe we like,
since such poking around will generally disturb the quantum computation. Moreover, if we rapidly and periodically
do this projection, which is probabilistic, then due to the “quantum Zeno effect,” we should be able to stay within the
subspace with high probability.

The problem, however, is that to do the symmetrization at all, we need to add in extra qubits and perform highly
entangling operations, again and again. Given that NISQ-era quantum computers are notoriously unreliable about
things like controlled swap operations, one might wonder if the errors introduced by the symmetrization algorithm
itself would outweight the errors corrected by symmetrization! And in fact, that sadly seems to be the case–for now!

But with an eye to the future, let’s check out how it might work.

(Incidentally, depending on one’s particular quantum circuit, there may be other relevant subspaces that one could
project into, without disturbing the computation, and which would provide some much needed stabliziation. The
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“stabilization via symmetrization” technique, however is nice insofar as it can help independently of the structure of
one’s circuits. Indeed, if such stabilization could be provided by the quantum computer itself that would be ideal.)

Let’s start off with a simple random circuit consisting of two qubits and two layers of gates. Note that we’re using the
library pytket for our circuits. random_pytket_circuit returns a dictionary specifying the circuit (for easy
manipulation), and requires build_pytket_circuit to actually construct the circuit.

[1]: from spheres import *

n_qubits = 2
depth = 2

circ_info = random_pytket_circuit(n_qubits=n_qubits, depth=depth)
circ = build_pytket_circuit(circ_info)

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

The resulting circuit will look something like this (the image below was pregenerated, since pytket won’t display
its latex output to jupyter notebooks):

Each layer consists of some single qubit gates and a CNOT.

[2]: sym_circ_info = symmetrize_pytket_circuit(circ_info,
n_copies=2,
every=1,
pairwise=False)

sym_circ = sym_circ_info["circuit"]

The symmetrized circuit might look something like this:
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We have two copies of the circuit running in parallel, and we do symmetrization after each of the two layers.

First, let’s evaluate the original circuit analytically to see what the answers should be.

[4]: basis = list(product([0,1], repeat=n_qubits))
def display_dist(dist):

global basis
for bitstr in basis:

val = dist[bitstr] if bitstr in dist else 0
print(" %s: %f" % ("".join([str(b) for b in bitstr]), val))

circ_dist = eval_pytket_circuit_ibm(circ, analytic=True)
print("analytical dist for original circuit:")
display_dist(circ_dist)

analytical dist for original circuit:
00: 0.500000
01: 0.000000
10: 0.500000
11: 0.000000

Now let’s add in some noise. We can choose between thermal_noise_model, bitflip_noise_model and
ibmq_16_melbourne_noise_model model, or add in a new one!

[6]: circ_noise_model = thermal_noise_model(n_qubits=n_qubits, on_qubits=list(range(n_
→˓qubits)))
noisy_circ_counts = eval_pytket_circuit_ibm(circ.copy().measure_all(), noise_
→˓model=circ_noise_model)
noisy_circ_dist = probs_from_counts(noisy_circ_counts)

print("noisy dist for original circuit:")
display_dist(noisy_circ_dist)

noisy dist for original circuit:
00: 0.512625
01: 0.002875
10: 0.482500
11: 0.002000

We could try to do error mitigation:
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[7]: circ_meas_filter = qiskit_error_calibration(n_qubits, circ_noise_model)
mitigated_circ_dist = probs_from_counts(qiskit_pytket_counts(circ_meas_filter.
→˓apply(pytket_qiskit_counts(noisy_circ_counts))))

print("mitigated dist for original circuit:")
display_dist(mitigated_circ_dist)

mitigated dist for original circuit:
00: 0.504593
01: 0.002901
10: 0.490434
11: 0.002073

Now let’s look at the symmetrized circuit. We evaluate the circuit, do the postselection, and average the results across
the copies. Here we haven’t included any noise, so this won’t be any different from simply running the original circuit
with a higher number of shots.

[8]: def display_sym_dists(sym_dists):
global basis
exp_dists, avg_dist = sym_dists["exp_dists"], sym_dists["avg_dist"],
print(" postselected dists:")
for i, dist in enumerate(exp_dists):

print(" circuit %d:" % i)
for bitstr in basis:

print(" %s: %f" % ("".join([str(b) for b in bitstr]), dist[bitstr]))
→˓if bitstr in dist else None

print(" averaged dists:")
for bitstr in basis:

print(" %s: %f" % ("".join([str(b) for b in bitstr]), avg_dist[bitstr]))
→˓if bitstr in avg_dist else None

clean_sym_circ_counts = eval_pytket_circuit_ibm(sym_circ)

print("clean sym circ dists:")
display_sym_dists(process_symmetrized_pytket_counts(sym_circ_info, clean_sym_circ_
→˓counts))

clean sym circ dists:
postselected dists:
circuit 0:

00: 0.502000
10: 0.498000

circuit 1:
00: 0.514375
10: 0.485625

averaged dists:
00: 0.508188
10: 0.491812

Now let’s look at the performance of the symmetrized circuits with some noise.

[9]: sym_circ_noise_model = thermal_noise_model(n_qubits=len(sym_circ.qubits), on_
→˓qubits=list(range(len(sym_circ.qubits))))
noisy_sym_circ_counts = eval_pytket_circuit_ibm(sym_circ, noise_model=sym_circ_noise_
→˓model)

print("noisy sym circ dists:")
noisy_sym_circ_dists = process_symmetrized_pytket_counts(sym_circ_info, noisy_sym_
→˓circ_counts) (continues on next page)
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display_sym_dists(noisy_sym_circ_dists)

noisy sym circ dists:
postselected dists:
circuit 0:

00: 0.506192
01: 0.015902
10: 0.460597
11: 0.017309

circuit 1:
00: 0.506192
01: 0.020124
10: 0.458204
11: 0.015480

averaged dists:
00: 0.506192
01: 0.018013
10: 0.459401
11: 0.016395

We could try doing error mitigation:

[10]: sym_circ_meas_filter = qiskit_error_calibration(len(sym_circ.qubits), sym_circ_noise_
→˓model)
mitigated_sym_circ_counts = qiskit_pytket_counts(sym_circ_meas_filter.apply(pytket_
→˓qiskit_counts(noisy_sym_circ_counts)))
mitigated_sym_circ_dists = process_symmetrized_pytket_counts(sym_circ_info, mitigated_
→˓sym_circ_counts)

print("mitigated sym circ dists:")
display_sym_dists(mitigated_sym_circ_dists)

mitigated sym circ dists:
postselected dists:
circuit 0:

00: 0.494203
01: 0.015483
10: 0.472539
11: 0.017775

circuit 1:
00: 0.498741
01: 0.020111
10: 0.465265
11: 0.015883

averaged dists:
00: 0.496472
01: 0.017797
10: 0.468902
11: 0.016829

And now let’s look at how well we did.

[12]: expected_probs = np.array([circ_dist[b] if b in circ_dist else 0 for b in basis])
actual_circ_probs = np.array([mitigated_circ_dist[b] if b in mitigated_circ_dist else
→˓0 for b in basis])
actual_sym_circ_probs = np.array([mitigated_sym_circ_dists["avg_dist"][b] if b in
→˓mitigated_sym_circ_dists["avg_dist"] else 0 for b in basis])

(continues on next page)
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print("expected results: %s" % expected_probs)
print("actual circ results: %s" % actual_circ_probs)
print("actual sym_circ results: %s" % actual_sym_circ_probs)
print()
print("circ error: %f" % np.linalg.norm(np.array(actual_circ_probs) - np.
→˓array(expected_probs)))
print("sym circ error: %f" % np.linalg.norm(np.array(actual_sym_circ_probs) - np.
→˓array(expected_probs)))

expected results: [0.5 0. 0.5 0. ]
actual circ results: [0.50459295 0.00290095 0.49043356 0.00207255]
actual sym_circ results: [0.496472 0.01779701 0.46890165 0.01682934]

circ error: 0.011195
sym circ error: 0.039743

To get a better sense of under what conditions the algorithm might be helpful, we can easily run experiments in batches.
For example, below we evaluate circuits with two qubits, with two copies to symmetrize over, where we symmetrize
every two layers, randomly pairwise instead of across all the circuits, with thermal noise, and where the errors apply
to auxilliary qubits as much as the other qubits. We evaluate such circuits for depths from 1 to 8, averaging over many
randomly generated circuits for each depth, and graph the results (we could have chosen another parameter to vary,
besides depth)!

[29]: from spheres import *

params = {"n_qubits": 1,\
#"depth": 2,\
"n_copies": 3,\
"every": 2,\
"pairwise": True,\
"noise_model": thermal_noise_model,\
"noise_model_name": thermal_noise_model,\
"error_on_all": True,\
"backend": Aer.get_backend("qasm_simulator"),\
"shots": 8000}

depths = list(range(1, 5))
n_runs = 50
experiments = []
for depth in depths:

print("depth: %d" % depth )
circ_errors, sym_circ_errors = [], []
for i in range(n_runs):

experiment = eval_pytket_symmetrization_performance(**params, depth=depth)
circ_errors.append(experiment["circ_error"])
sym_circ_errors.append(experiment["sym_circ_error"])

experiments.append({**params, **{"depth": depth,\
"circ_error": sum(circ_errors)/len(circ_errors),\
"sym_circ_error": sum(sym_circ_errors)/len(sym_

→˓circ_errors)}})

plot_symmetrization_performance("depth", experiments)

depth: 1
depth: 2
depth: 3
depth: 4

140 Chapter 2. spheres



spheres, Release 0.3.0.9

Some results, picked somewhat arbitrarily:
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Clearly, it’s not a given that this method of “stablization” will deliver results at least at the moment. It would be
interesting to find some set of conditions that would make this algorithm relevant. The difficulties are, of course,
errors in the symmetrization procedure itself, and also the scaling of the auxilliary qubits. Unless intermediate mea-
surements are possible, allowing one to reuse auxilliary qubits, the cost of applying the algorithm quickly becomes
prohibitive–and there aren’t enough gains at the small scale, it seems, to make it worth using. In the future, however,
one could imagine having thousands of qubits, as well as reliable CSWAP gates, so that one could reliably symmetrize
over hundreds copies of the circuit, etc. See the attached papers for some discussion of the types of errors that this
method is best at dealing with.

2.6.1 Bibliography

Error Symmetrization in Quantum Computers

Stabilization of Quantum Computations By Symmetrization

2.6. Stablization via Symmetrization 143

https://arxiv.org/abs/quant-ph/9611046
https://heyredhat.github.io/refs/Stabilization_of_Quantum_Compu.pdf


spheres, Release 0.3.0.9

144 Chapter 2. spheres



CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

145



spheres, Release 0.3.0.9

146 Chapter 3. Indices and tables



PYTHON MODULE INDEX

s
spheres, 3
spheres.beams, 3
spheres.coordinates, 6
spheres.oscillators, 9
spheres.polyhedra, 14
spheres.relativity, 15
spheres.spin_circuits, 16
spheres.spin_circuits.pytket, 16
spheres.spin_circuits.qiskit, 19
spheres.spin_circuits.strawberryfields,

21
spheres.stabilization, 22
spheres.stabilization.pytket, 22
spheres.stars, 28
spheres.stars.mixed, 29
spheres.stars.pure, 31
spheres.stars.star_utils, 36
spheres.symmetrization, 38
spheres.symplectic, 40
spheres.utils, 46
spheres.visualization, 53
spheres.visualization.majorana_sphere,

53
spheres.visualization.matplotlib_spheres,

57
spheres.visualization.operator_sphere,

58
spheres.visualization.schwinger_spheres,

59
spheres.visualization.vp_object, 61

147



spheres, Release 0.3.0.9

148 Python Module Index



INDEX

Symbols
__init__() (spheres.visualization.majorana_sphere.MajoranaSphere

method), 55
__init__() (spheres.visualization.majorana_sphere.SphericalWavefunction

method), 57
__init__() (spheres.visualization.operator_sphere.OperatorSphere

method), 59
__init__() (spheres.visualization.schwinger_spheres.OscillatorPlane

method), 60
__init__() (spheres.visualization.schwinger_spheres.SchwingerSpheres

method), 60
__init__() (spheres.visualization.vp_object.VObject

method), 62

A
animate_spin() (in module

spheres.visualization.matplotlib_spheres),
58

animate_spin_beam() (in module spheres.beams),
4

annihilators() (in module spheres.oscillators), 10
antipodal() (in module spheres.stars.star_utils), 36

B
basis() (in module spheres.stars.star_utils), 36
binomial() (in module spheres.utils), 47
bitflip_noise_model() (in module

spheres.stabilization.pytket), 23
bitstring_basis() (in module spheres.utils), 47
build_pytket_circuit() (in module

spheres.stabilization.pytket), 23

C
c_sph() (in module spheres.coordinates), 6
c_spin() (in module spheres.stars.pure), 32
c_spinor() (in module spheres.coordinates), 7
c_xyz() (in module spheres.coordinates), 7
clear_snapshot() (spheres.visualization.majorana_sphere.MajoranaSphere

method), 56
clear_trails() (spheres.visualization.majorana_sphere.MajoranaSphere

method), 56
colorize() (in module spheres.beams), 4

compare_nophase() (in module spheres.utils), 47
compare_spinors() (in module spheres.utils), 48
compare_unordered() (in module spheres.utils), 48
complex_real_symplectic() (in module

spheres.symplectic), 41
complex_real_symplectic2() (in module

spheres.symplectic), 42
components() (in module spheres.utils), 48

D
density_to_purevec() (in module spheres.utils),

48
destroy() (spheres.visualization.majorana_sphere.MajoranaSphere

method), 56
destroy() (spheres.visualization.operator_sphere.OperatorSphere

method), 59
destroy() (spheres.visualization.schwinger_spheres.SchwingerSpheres

method), 60
dirac() (in module spheres.utils), 49

E
equidistribute_points() (in module

spheres.polyhedra), 15
eval_pytket_circuit_ibm() (in module

spheres.stabilization.pytket), 23
eval_pytket_symmetrization_performance()

(in module spheres.stabilization.pytket), 24
eval_symmetrized_pytket_circuit() (in

module spheres.stabilization.pytket), 24
evolve() (spheres.visualization.majorana_sphere.MajoranaSphere

method), 56
evolve() (spheres.visualization.operator_sphere.OperatorSphere

method), 59
evolve() (spheres.visualization.schwinger_spheres.SchwingerSpheres

method), 60

F
fix_stars() (in module spheres.utils), 49
flatten() (in module spheres.utils), 49
from_pauli_basis() (in module spheres.utils), 49

149



spheres, Release 0.3.0.9

G
gaussian_complex_symplectic() (in module

spheres.symplectic), 43

I
ibmq_16_melbourne_noise_model() (in mod-

ule spheres.stabilization.pytket), 25
is_complex_symplectic() (in module

spheres.symplectic), 43
is_real_symplectic() (in module

spheres.symplectic), 43

J
j (spheres.visualization.majorana_sphere.MajoranaSphere

attribute), 54

L
laguerre_gauss_mode() (in module

spheres.beams), 4
lower_spin() (spheres.visualization.schwinger_spheres.SchwingerSpheres

method), 61

M
MajoranaSphere (class in

spheres.visualization.majorana_sphere),
54

make_gaussian_operator() (in module
spheres.symplectic), 44

make_trails (spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 55

measure() (in module spheres.utils), 50
measure() (spheres.visualization.schwinger_spheres.SchwingerSpheres

method), 61
mobius() (in module spheres.relativity), 15
module

spheres, 3
spheres.beams, 3
spheres.coordinates, 6
spheres.oscillators, 9
spheres.polyhedra, 14
spheres.relativity, 15
spheres.spin_circuits, 16
spheres.spin_circuits.pytket, 16
spheres.spin_circuits.qiskit, 19
spheres.spin_circuits.strawberryfields,

21
spheres.stabilization, 22
spheres.stabilization.pytket, 22
spheres.stars, 28
spheres.stars.mixed, 29
spheres.stars.pure, 31
spheres.stars.star_utils, 36
spheres.symmetrization, 38

spheres.symplectic, 40
spheres.utils, 46
spheres.visualization, 53
spheres.visualization.majorana_sphere,

53
spheres.visualization.matplotlib_spheres,

57
spheres.visualization.operator_sphere,

58
spheres.visualization.schwinger_spheres,

59
spheres.visualization.vp_object, 61

N
normalize() (in module spheres.utils), 50
normalize_phase() (in module spheres.utils), 50

O
omega_c() (in module spheres.symplectic), 44
omega_r() (in module spheres.symplectic), 44
operator_real_symplectic() (in module

spheres.symplectic), 44
operator_spherical_decomposition() (in

module spheres.stars.mixed), 29
operator_spins() (in module spheres.stars.mixed),

29
OperatorSphere (class in

spheres.visualization.operator_sphere), 59
osc_spin() (in module spheres.oscillators), 11
osc_spinblocks() (in module spheres.oscillators),

11
osc_spins() (in module spheres.oscillators), 11
osc_spintower_map() (in module

spheres.oscillators), 11
OscillatorPlane (class in

spheres.visualization.schwinger_spheres),
60

P
pauli_basis() (in module spheres.utils), 50
pauli_eigenstate() (in module

spheres.stars.star_utils), 37
phase (spheres.visualization.majorana_sphere.MajoranaSphere

attribute), 54
phase() (in module spheres.utils), 51
phase_angle() (in module spheres.utils), 51
plot_symmetrization_performance() (in

module spheres.stabilization.pytket), 25
poleflip() (in module spheres.stars.star_utils), 37
poly_roots() (in module spheres.stars.pure), 32
poly_spin() (in module spheres.stars.pure), 32
polygon_area() (in module spheres.utils), 51
postselect_results_qiskit() (in module

spheres.spin_circuits.qiskit), 20

150 Index



spheres, Release 0.3.0.9

postselect_shots() (in module
spheres.spin_circuits.pytket), 17

process_symmetrized_pytket_counts() (in
module spheres.stabilization.pytket), 25

pytket_qiskit_counts() (in module
spheres.stabilization.pytket), 26

Q
qiskit_error_calibration() (in module

spheres.stabilization.pytket), 26
qiskit_pytket_counts() (in module

spheres.stabilization.pytket), 26
qubits_xyz() (in module spheres.utils), 51

R
raise_spin() (spheres.visualization.schwinger_spheres.SchwingerSpheres

method), 61
rand_c() (in module spheres.utils), 52
rand_sph() (in module spheres.utils), 52
rand_xyz() (in module spheres.utils), 52
random() (spheres.visualization.schwinger_spheres.SchwingerSpheres

method), 61
random_gaussian_operator() (in module

spheres.symplectic), 45
random_hamiltonian()

(spheres.visualization.schwinger_spheres.SchwingerSpheres
method), 61

random_pairs() (in module
spheres.stabilization.pytket), 26

random_pytket_circuit() (in module
spheres.stabilization.pytket), 27

random_unique_pairs() (in module
spheres.stabilization.pytket), 27

Rk_pytket() (in module spheres.spin_circuits.pytket),
17

Rk_qiskit() (in module spheres.spin_circuits.qiskit),
19

roots_poly() (in module spheres.stars.pure), 32

S
scene (spheres.visualization.majorana_sphere.MajoranaSphere

attribute), 54
SchwingerSpheres (class in

spheres.visualization.schwinger_spheres),
60

second_quantize_operator() (in module
spheres.oscillators), 12

second_quantize_spin_state() (in module
spheres.oscillators), 12

second_quantize_state() (in module
spheres.oscillators), 12

second_quantized_paulis() (in module
spheres.oscillators), 13

show_norm (spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 55

show_phase (spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 55

show_reference_axes
(spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 55

show_rotation_axis
(spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 54

show_wavefunction
(spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 55

snapshot() (spheres.visualization.majorana_sphere.MajoranaSphere
method), 56

sph_c() (in module spheres.coordinates), 7
sph_spin() (in module spheres.stars.pure), 33
sph_spinor() (in module spheres.coordinates), 7
sph_xyz() (in module spheres.coordinates), 8
sphere_draggable (spheres.visualization.majorana_sphere.MajoranaSphere

attribute), 55
spheres

module, 3
spheres.beams

module, 3
spheres.coordinates

module, 6
spheres.oscillators

module, 9
spheres.polyhedra

module, 14
spheres.relativity

module, 15
spheres.spin_circuits

module, 16
spheres.spin_circuits.pytket

module, 16
spheres.spin_circuits.qiskit

module, 19
spheres.spin_circuits.strawberryfields

module, 21
spheres.stabilization

module, 22
spheres.stabilization.pytket

module, 22
spheres.stars

module, 28
spheres.stars.mixed

module, 29
spheres.stars.pure

module, 31
spheres.stars.star_utils

module, 36
spheres.symmetrization

Index 151



spheres, Release 0.3.0.9

module, 38
spheres.symplectic

module, 40
spheres.utils

module, 46
spheres.visualization

module, 53
spheres.visualization.majorana_sphere

module, 53
spheres.visualization.matplotlib_spheres

module, 57
spheres.visualization.operator_sphere

module, 58
spheres.visualization.schwinger_spheres

module, 59
spheres.visualization.vp_object

module, 61
spherical_decomposition_operator() (in

module spheres.stars.mixed), 30
spherical_decomposition_spins() (in mod-

ule spheres.stars.mixed), 30
spherical_inner() (in module

spheres.stars.star_utils), 38
spherical_tensor() (in module

spheres.stars.mixed), 30
spherical_tensor_basis() (in module

spheres.stars.mixed), 30
SphericalWavefunction (class in

spheres.visualization.majorana_sphere),
57

spin (spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 54

spin_beam() (in module spheres.beams), 5
spin_c() (in module spheres.stars.pure), 33
spin_coherent() (in module

spheres.stars.star_utils), 38
spin_osc() (in module spheres.oscillators), 13
spin_osc_map() (in module spheres.oscillators), 13
spin_osc_strawberryfields() (in module

spheres.spin_circuits.strawberryfields), 21
spin_poly() (in module spheres.stars.pure), 33
spin_sph() (in module spheres.stars.pure), 35
spin_spinors() (in module spheres.stars.pure), 35
spin_sym() (in module spheres.symmetrization), 39
spin_sym_map() (in module spheres.symmetrization),

39
spin_sym_pytket() (in module

spheres.spin_circuits.pytket), 17
spin_sym_qiskit() (in module

spheres.spin_circuits.qiskit), 20
spin_tomography_pytket() (in module

spheres.spin_circuits.pytket), 18
spin_tomography_qiskit() (in module

spheres.spin_circuits.qiskit), 21

spin_tower_dimensions() (in module
spheres.oscillators), 13

spin_xyz() (in module spheres.stars.pure), 35
spinj_xyz() (in module spheres.utils), 52
spinj_xyz_osc() (in module spheres.oscillators), 14
spinj_xyz_strawberryfields() (in module

spheres.spin_circuits.strawberryfields), 21
spinor_c() (in module spheres.coordinates), 8
spinor_sph() (in module spheres.coordinates), 8
spinor_xyz() (in module spheres.coordinates), 8
spinors_spin() (in module spheres.stars.pure), 35
spins_operator() (in module spheres.stars.mixed),

31
spins_osc() (in module spheres.oscillators), 14
spins_spherical_decomposition() (in mod-

ule spheres.stars.mixed), 31
sym_spin() (in module spheres.symmetrization), 39
symmetrize() (in module spheres.symmetrization),

40
symmetrize_pytket_circuit() (in module

spheres.stabilization.pytket), 27
symmetrized_basis() (in module

spheres.symmetrization), 40
symplectic_xyz() (in module spheres.symplectic),

45

T
tangent_plane_rotation() (in module

spheres.visualization.majorana_sphere),
53

tensor_upgrade() (in module spheres.utils), 52
thermal_noise_model() (in module

spheres.stabilization.pytket), 28
Tkj_pytket() (in module

spheres.spin_circuits.pytket), 17
Tkj_qiskit() (in module

spheres.spin_circuits.qiskit), 20
to_pauli_basis() (in module spheres.utils), 53
tomography_circuits_pytket() (in module

spheres.spin_circuits.pytket), 18
tomography_dm_pytket() (in module

spheres.spin_circuits.pytket), 19

U
upgrade_single_mode_operator() (in module

spheres.symplectic), 45
upgrade_two_mode_operator() (in module

spheres.symplectic), 45

V
vacuum() (in module spheres.oscillators), 14
vacuum() (spheres.visualization.schwinger_spheres.SchwingerSpheres

method), 61
viz_beam() (in module spheres.beams), 5

152 Index



spheres, Release 0.3.0.9

viz_spin() (in module
spheres.visualization.matplotlib_spheres),
58

viz_spin_beam() (in module spheres.beams), 5
VObject (class in spheres.visualization.vp_object), 62

W
wavefunction_samples

(spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 55

wavefunction_type
(spheres.visualization.majorana_sphere.MajoranaSphere
attribute), 55

X
xyz (spheres.visualization.majorana_sphere.MajoranaSphere

attribute), 54
xyz_c() (in module spheres.coordinates), 9
xyz_sph() (in module spheres.coordinates), 9
xyz_spin() (in module spheres.stars.pure), 35
xyz_spinor() (in module spheres.coordinates), 9

Index 153


	spheres
	spheres.beams
	spheres.coordinates
	spheres.oscillators
	spheres.polyhedra
	spheres.relativity
	spheres.spin_circuits
	spheres.stabilization
	spheres.stars
	spheres.symmetrization
	spheres.symplectic
	spheres.utils
	spheres.visualization

	spheres
	An Introduction to Majorana’s “Stellar” Representation of Spin
	How to Prepare a Permutation Symmetric Multiqubit State on an Actual Quantum Computer
	How To Prepare a Spin-j State on a Photonic Quantum Computer
	Majorana Stars and Structured Gaussian Beams
	Generalizing the Majorana Representation for Mixed States and Operators
	Stablization via Symmetrization

	Indices and tables
	Python Module Index
	Index

